[1]
M.H. Aliabadi The boundary element method, applications in solids and structures, Wiley, Chichester, (2002).
Google Scholar
[2]
Fedelinski P; Aliabadi MH; Rooke DP Boundary element formulations for the dynamic analysis of cracked structures ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS Volume: 17 Issue: 1 Pages: 45-56 , (1996).
DOI: 10.1016/0955-7997(95)00089-5
Google Scholar
[3]
Sollero, P; Aliabadi MH Anisotropic analysis of cracks in composite laminates using the dual boundary element method COMPOSITE STRUCTURES Volume: 31 Issue: 3 Pages: 229-233 (1995).
DOI: 10.1016/0263-8223(95)00105-0
Google Scholar
[4]
Fedelinski P; Aliabadi MH; Rooke DP The laplace transform deem for mixed-mode dynamic crack analysis COMPUTERS & STRUCTURES Volume: 59 Issue: 6 Pages: 1021-1031 , (1996).
DOI: 10.1016/0045-7949(95)00347-9
Google Scholar
[5]
Portela A.
Google Scholar
[5]
Aliabadi MH; Rooke DP The dual boundary element method – effective implementation for crack problems, INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Volume: 33 Issue: 6 Pages: 1269-1287 (1992).
DOI: 10.1002/nme.1620330611
Google Scholar
[6]
Wen PH; Aliabadi MH; Rooke DP Cracks in three dimensions: A dynamic dual boundary element analysis COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING Volume: 167 Issue: 1-2 Pages: 139-151, (1998).
DOI: 10.1016/s0045-7825(98)00116-9
Google Scholar
[7]
Albuquerque EL; Sollero P; Aliabadi MH Dual boundary element method for anisotropic dynamic fracture mechanics INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Volume: 59 Issue: 9 Pages: 1187-1205 (2004).
DOI: 10.1002/nme.912
Google Scholar
[8]
Saleh, AL; Aliabadi MH Crack growth analysis in concrete using boundary element method ENGINEERING FRACTURE MECHANICS Volume: 51 Issue: 4 Pages: 533-545 (1995).
DOI: 10.1016/0013-7944(94)00301-w
Google Scholar
[9]
Wen P. H.; Aliabadi M. H.; Lin Y. W. Meshless method for crack analysis in functionally graded materials with enriched radial base functions, CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES Volume: 30 Issue: 3 Pages: 133-147 (2008).
Google Scholar
[10]
Wen P. H.; Aliabadi M. H. An improved meshless collocation method for elastostatic and elastodynamic problems COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Volume: 24 Issue: 8 Pages: 635-651 (2008).
DOI: 10.1002/cnm.977
Google Scholar
[11]
Wen P. H.; Aliabadi M. H. Evaluation of mixed-mode stress intensity factors by the mesh-free Galerkin method: static and dynamic JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN Volume: 44 Issue: 4 Pages: 273-286 (2009).
DOI: 10.1243/03093247jsa509
Google Scholar
[12]
Li L. Y.; Wen P. H.; Aliabadi M. H. Meshfree modeling and homogenization of 3D orthogonal woven composites, COMPOSITES SCIENCE AND TECHNOLOGY Volume: 71 Issue: 15 Pages: 1777-1788 (2011).
DOI: 10.1016/j.compscitech.2011.08.014
Google Scholar
[13]
Sfantos G. K.; Aliabadi M. H Multi-scale boundary element modelling of material degradation and fracture COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING Volume: 196 Issue: 7 Pages: 1310-1329 (2007).
DOI: 10.1016/j.cma.2006.09.004
Google Scholar
[14]
Wen PH, Aliabadi MH, A variational approach for evaluation of stress intensity factors using the element free Galerkin method, INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, Vol: 48, Pages: 1171-1179, (2011).
DOI: 10.1016/j.ijsolstr.2011.01.002
Google Scholar
[15]
F. Durbin, Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate's method, The Computer J., 17, 371-376, (1975).
DOI: 10.1093/comjnl/17.4.371
Google Scholar
[16]
D.P. Rooke, D.J. Cartwright, Compendium of Stress Intensity Factors, London, Her Majesty's Stationery Office, (1976).
Google Scholar
[17]
P.H. Wen, Dynamic Fracture Mechanics: Displacement Discontinuity Method, Computational Mechanics Publications, Southampton UK and Boston USA, (1996).
Google Scholar