Dynamic Crack Problems Using Meshless Method

Article Preview

Abstract:

A Meshless Approximation Based on the Radial Basis Function (RBF) Is Developed for Analysis of Dynamic Crack Problems. A Weak Form for a Set of Governing Equations with a Unit Test Function Is Transformed into Local Integral Equations. A Completed Set of Closed Forms of the Local Boundary Integrals Are Obtained. as the Closed Forms of the Local Boundary Integrals Are Obtained, there Are No any Domain or Boundary Integrals to Be Calculated Numerically in this Approach.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 525-526)

Pages:

601-604

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.H. Aliabadi The boundary element method, applications in solids and structures, Wiley, Chichester, (2002).

Google Scholar

[2] Fedelinski P; Aliabadi MH; Rooke DP Boundary element formulations for the dynamic analysis of cracked structures ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS  Volume: 17   Issue: 1   Pages: 45-56  , (1996).

DOI: 10.1016/0955-7997(95)00089-5

Google Scholar

[3] Sollero, P; Aliabadi MH Anisotropic analysis of cracks in composite laminates using the dual boundary element method COMPOSITE STRUCTURES Volume: 31 Issue: 3 Pages: 229-233 (1995).

DOI: 10.1016/0263-8223(95)00105-0

Google Scholar

[4] Fedelinski P; Aliabadi MH; Rooke DP The laplace transform deem for mixed-mode dynamic crack analysis COMPUTERS & STRUCTURES  Volume: 59   Issue: 6   Pages: 1021-1031 , (1996).

DOI: 10.1016/0045-7949(95)00347-9

Google Scholar

[5] Portela A.

Google Scholar

[5] Aliabadi MH; Rooke DP The dual boundary element method – effective implementation for crack problems, INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Volume: 33 Issue: 6 Pages: 1269-1287 (1992).

DOI: 10.1002/nme.1620330611

Google Scholar

[6] Wen PH; Aliabadi MH; Rooke DP Cracks in three dimensions: A dynamic dual boundary element analysis COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING Volume: 167 Issue: 1-2 Pages: 139-151, (1998).

DOI: 10.1016/s0045-7825(98)00116-9

Google Scholar

[7] Albuquerque EL; Sollero P; Aliabadi MH Dual boundary element method for anisotropic dynamic fracture mechanics INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING  Volume: 59   Issue: 9   Pages: 1187-1205    (2004).

DOI: 10.1002/nme.912

Google Scholar

[8] Saleh, AL; Aliabadi MH Crack growth analysis in concrete using boundary element method ENGINEERING FRACTURE MECHANICS Volume: 51 Issue: 4 Pages: 533-545 (1995).

DOI: 10.1016/0013-7944(94)00301-w

Google Scholar

[9] Wen P. H.; Aliabadi M. H.; Lin Y. W. Meshless method for crack analysis in functionally graded materials with enriched radial base functions, CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES Volume: 30 Issue: 3 Pages: 133-147 (2008).

Google Scholar

[10] Wen P. H.; Aliabadi M. H. An improved meshless collocation method for elastostatic and elastodynamic problems COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING  Volume: 24   Issue: 8   Pages: 635-651    (2008).

DOI: 10.1002/cnm.977

Google Scholar

[11] Wen P. H.; Aliabadi M. H. Evaluation of mixed-mode stress intensity factors by the mesh-free Galerkin method: static and dynamic JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN Volume: 44 Issue: 4 Pages: 273-286 (2009).

DOI: 10.1243/03093247jsa509

Google Scholar

[12] Li L. Y.; Wen P. H.; Aliabadi M. H. Meshfree modeling and homogenization of 3D orthogonal woven composites, COMPOSITES SCIENCE AND TECHNOLOGY  Volume: 71   Issue: 15   Pages: 1777-1788    (2011).

DOI: 10.1016/j.compscitech.2011.08.014

Google Scholar

[13] Sfantos G. K.; Aliabadi M. H Multi-scale boundary element modelling of material degradation and fracture COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING  Volume: 196   Issue: 7   Pages: 1310-1329    (2007).

DOI: 10.1016/j.cma.2006.09.004

Google Scholar

[14] Wen PH, Aliabadi MH, A variational approach for evaluation of stress intensity factors using the element free Galerkin method, INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, Vol: 48, Pages: 1171-1179, (2011).

DOI: 10.1016/j.ijsolstr.2011.01.002

Google Scholar

[15] F. Durbin, Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate's method, The Computer J., 17, 371-376, (1975).

DOI: 10.1093/comjnl/17.4.371

Google Scholar

[16] D.P. Rooke, D.J. Cartwright, Compendium of Stress Intensity Factors, London, Her Majesty's Stationery Office, (1976).

Google Scholar

[17] P.H. Wen, Dynamic Fracture Mechanics: Displacement Discontinuity Method, Computational Mechanics Publications, Southampton UK and Boston USA, (1996).

Google Scholar