[1]
S. Gopalakrishnan, M. Ruzzene, and S. Hanagud, Computational Techniques for Structural Health Monitoring: Springer Verlag, (2011).
DOI: 10.1007/978-0-85729-284-1
Google Scholar
[2]
M. Ghajari, Z. Sharif Khodaei, and M. Aliabadi, Impact Detection Using Artificial Neural Networks, Key Engineering Materials, vol. 488, pp.767-770, (2012).
DOI: 10.4028/www.scientific.net/kem.488-489.767
Google Scholar
[3]
Z. Sharif Khodaei and M. H. Aliabadi, Damage Identification Using Lamb Waves, Key Engineering Materials, vol. 452, pp.29-32, (2011).
DOI: 10.4028/www.scientific.net/kem.452-453.29
Google Scholar
[4]
Z. Sharif Khodaei, R. Rojas-Diaz, and M. Aliabadi, Lamb-Wave Based Technique for Impact Damage Detection in Composite Stiffened Panels, Key Engineering Materials, vol. 488, pp.5-8, (2012).
DOI: 10.4028/www.scientific.net/kem.488-489.5
Google Scholar
[5]
D. Worlton, Experimental confirmation of Lamb waves at megacycle frequencies, Journal of Applied Physics, vol. 32, pp.967-971, (1961).
DOI: 10.1063/1.1736196
Google Scholar
[6]
Z. Su and L. Ye, Identification of Damage Using Lamb Waves: From Fundamentals to Applications: Springer Verlag, (2009).
Google Scholar
[7]
S. Ha and F. K. Chang, Adhesive interface layer effects in PZT-induced Lamb wave propagation, Smart Materials and Structures, vol. 19, p.025006, (2010).
DOI: 10.1088/0964-1726/19/2/025006
Google Scholar
[8]
Z. Su, L. Ye, and Y. Lu, Guided Lamb waves for identification of damage in composite structures: a review, Journal of Sound and Vibration, vol. 295, pp.753-780, (2006).
DOI: 10.1016/j.jsv.2006.01.020
Google Scholar
[9]
S. Ha, A. Mittal, K. Lonkar, and F. K. Chang, Adhesive layer effects on temperaturesensitive lamb waves induced by surface-mounted pzt actuators, 2009, pp.2221-2233.
Google Scholar