Mechanical Properties of Alumina Based Nanocomposites

Article Preview

Abstract:

To study the microstructure and mechanical properties of alumina nanocomposites, Al2O3/2.5 vol.% Ni and Al2O3/10 vol.% ZrO2 nanocomposites were consolidated by pulsed electric current sintering (PECS). Fracture toughness was found to increase by 13 % and 16 % respectively compared to reference alumina. Hardness increased slightly in Al2O3/Ni because of a fraction of nickel particles under the critical size (2 following the rule of mixtures. By investigating the results, causes of improved mechanical properties were critically evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-106

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Pecharromán, F. Esteban-Betegon, J. F. Bartolomé, Gunther Richter and J. S. Moya, Theoretical model of hardening in Zirconia-Nickel Nanoparticle composites, Nano Let. 4 (2004) 747-751.

DOI: 10.1021/nl0499286

Google Scholar

[2] J.S. Moya, T. Rodriques-Suarez, S. Lopez-Esteban, C. Pecharromán, R. Torrecillas, L.A. Días and M. Nygren, Diamond-like hardening of alumina/Ni nanocomposites, Adv. Eng. Mater. 9 (2007) 898-901.

DOI: 10.1002/adem.200700172

Google Scholar

[3] T. Rodrigues-Suarez, J.F. Bartolomé, A. Smirnov, S. Lopez-Esteban, R. Torrecillas, J.S. Moya, Sliding wear behaviour of alumina/nickel nanocomposites processed by a conventional sintering route, J. Eur. Ceram. Soc. 31 (2011) 1389-1395.

DOI: 10.1016/j.jeurceramsoc.2011.02.011

Google Scholar

[4] A. Smirnov, J.F. Bartolomé, J.S. Moya, F. Kern, R. Gadow, Dry reciprocating sliding wear behavior of alumina-silicon carbide nanocomposite fabricated by ceramic injection moulding, J. Eur. Ceram. Soc. 31 (2011) 469-474.

DOI: 10.1016/j.jeurceramsoc.2010.11.003

Google Scholar

[5] H. Awaji, Y. Nishimura, S-M. Choi, Y. Takahashi, T. Goto and S. Hashimoto, Toughening mechanism and frontal process zone size of ceramics, J. Ceram. Soc. Jap. 117 (2009) 623-629.

DOI: 10.2109/jcersj2.117.623

Google Scholar

[6] M. Sternitzke, Structural ceramic nanocomposites, J. Eur. Ceram. Soc. 17 (1997) 1061-1082.

Google Scholar

[7] S-M. Choi, H. Awaji, Nanocomposites – A new material design concept, Sci. Tech. Adv. Mater. 6 (2005) 2-10.

Google Scholar

[8] J.S. Moya, S. Lopez-Esteban, C. Pecharromán, The challenge of ceramic/metal micro and nanocomposites, Prog. Mater. Sci. 52 (2007) 1017-1090.

DOI: 10.1016/j.pmatsci.2006.09.003

Google Scholar

[9] M. Lieberthal, W.D. Kaplan, Processing and properties of Al2O3 nanocomposites reinforced with sub-micron Ni and NiAl2O4, Mater. Sci. Eng. A302 (2001) 83-91.

DOI: 10.1016/s0921-5093(00)01358-7

Google Scholar

[10] K. Niihara; R. Morena; D.P.H. Hasselman In: R.C. Bradt; A.G. Evans; D.P.H. Hasselman; F. F. Lange (eds.), Fracture mechanics of ceramics, New York, Plenum: v. 5 (1983) p.97.

DOI: 10.1007/978-1-4613-3488-0_7

Google Scholar

[11] O. Aharon, S. Bar-Ziv, D. Gorni, T. Cohen-Hyams, W.D. Kaplan, Residual stresses and magnetic properties of alumina-nickel nanocomposites, Scripta Materialia 50 (2004) 1209-1213.

DOI: 10.1016/j.scriptamat.2004.02.006

Google Scholar

[12] J.F. Bartolomé, G. Bruno, A.H. DeAza, Neutron diffraction residual stress analysis of zirconia toughened alumina (ZTA) composites, J. Eur. Ceram. Soc. 28 (2008) 1809-1814.

DOI: 10.1016/j.jeurceramsoc.2007.12.037

Google Scholar

[13] S.Novak, M. Kalin, P. Lukas, G. Anne, J. Vleugels, O. Van Der Biest, The effect of residual stresses in functionally graded alumina-ZTA composites on their wear and friction behavior, J. Eur. Ceram. Soc. 27 (2007) 151-156.

DOI: 10.1016/j.jeurceramsoc.2006.01.021

Google Scholar