[1]
A. Heuer, L.W. Hobbs, Science and technology of zirconia, Advances in ceramics, Vol. 3 American Ceramic Society, Westerville, 1981.
Google Scholar
[2]
S. Somiya, N. Yamamoto, H. Yanagina (Eds.), Advances in ceramics, Vols. 24A and 24B American Ceramic Society, Westerville, 1988.
Google Scholar
[3]
R.H. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia-containing Ceramics. J. Am. Ceram. Soc. 83 (2000) 461 – 487.
DOI: 10.1111/j.1151-2916.2000.tb01221.x
Google Scholar
[4]
F. F. Lange, Transformation Toughening, Part 5: Effect of temperature and alloy on fracture toughness, J. Mater. Sci. 17 (1982) 255 – 262.
DOI: 10.1007/bf00809061
Google Scholar
[5]
D. J. Green, R. H. J. Hannink, M. V. Swain, Transformation toughening of ceramics. CRC Press, Boca Raton, 1989.
Google Scholar
[6]
M. Tokita, Mechanism of spark plasma sintering, Ceramics, 21 (2010) 605 – 608.
Google Scholar
[7]
M.E. Cura, N. Voltsihhin, I. Hussainova, M. Viljus, S-P. Hannula, Effect of carbon content on sinterability and properties of ZrO2 doped WC-cermets, in: T. Otto (Ed.), Proceedings of the 8th international conference of DAAAM Baltic industrial engineering, Tallinn, 2012, p.771 – 776.
Google Scholar
[8]
N. Voltsihhin, M.E. Cura, I. Hussainova, S-P. Hannula, Sintering routes for zirconia doped hardmetals, in: T. Otto (Ed.), Proceedings of the 8th international conference of DAAAM Baltic industrial engineering, Tallinn, 2012, p.765 – 770.
DOI: 10.4028/www.scientific.net/kem.527.50
Google Scholar
[9]
I. Hussainova, A. Smirnov, M. Antonov, Mechanical characterization and wear performance of WC-ZrO2-Ni cermets produced by hot isostatic pressing. Adv. Mat. Res. 214 (2011) 344 – 348.
DOI: 10.4028/www.scientific.net/amr.214.344
Google Scholar
[10]
S. Kim, S-K. Han, J-K. Park, H-E. Kim, Variation of WC grain shape with carbon content in the WC–Co alloys during liquid-phase sintering, Scripta Mater. 48 (2003) 635 – 639.
DOI: 10.1016/s1359-6462(02)00464-5
Google Scholar
[11]
A. G. Evans, T. R. Wilshaw, Quasi-static solid particle damage in brittle solids. I. Observations, analysis and implications. Acta Metall. 24 (1976) 939 – 956.
DOI: 10.1016/0001-6160(76)90042-0
Google Scholar
[12]
A. G. Evans, E. A. Charles, Fracture toughness determinations by indentation. J. Am. Ceram. Soc. 59 (1976) 371 – 372.
Google Scholar
[13]
I. Hussainova, M. Antonov, Assessment of cermets performance in erosive media, Int. J. Mater. Prod. Technol. 28 (2007) 361 – 376.
Google Scholar
[14]
Hussainova, I.; Antonov, M.; Voltsihhin, N. (2011) Assessment of zirconia doped hardmetals as tribomaterials. Wear, 271 (2011) 1909 – 1915.
DOI: 10.1016/j.wear.2010.11.034
Google Scholar
[15]
A. Evans, M. Golden, M. Rosenblatt, Impact damage in brittle materials. Proc. R. Soc. London Ser, 361 (1978) 343–353.
Google Scholar
[16]
H. Reshetnyak, J. Kubarsepp, Resistance of hardmetals to fracture. Powder Metallurgy, 41 (1998) 211 – 216.
DOI: 10.1179/pom.1998.41.3.211
Google Scholar