Densification and Microstructure Development in Zirconia Toughened Hardmetals

Article Preview

Abstract:

Different process methods and parameters together with different amount of additives were used to fabricate WC-Ni-ZrO2 hardmetals with mechanical properties aiming at improved performance under erosive wear. XRD observation showed the presence of tetragonal zirconia in the cermet matrix after processing. The best erosion resistance with erosion rate of about 0.7 mm3/kg was demonstrated by the specimen produced either by vacuum sintering or SPS and added by 0.2 wt% of free carbon. This cermet has also demonstrated the highest hardness of 17.7 GPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

50-55

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Heuer, L.W. Hobbs, Science and technology of zirconia, Advances in ceramics, Vol. 3 American Ceramic Society, Westerville, 1981.

Google Scholar

[2] S. Somiya, N. Yamamoto, H. Yanagina (Eds.), Advances in ceramics, Vols. 24A and 24B American Ceramic Society, Westerville, 1988.

Google Scholar

[3] R.H. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia-containing Ceramics. J. Am. Ceram. Soc. 83 (2000) 461 – 487.

DOI: 10.1111/j.1151-2916.2000.tb01221.x

Google Scholar

[4] F. F. Lange, Transformation Toughening, Part 5: Effect of temperature and alloy on fracture toughness, J. Mater. Sci. 17 (1982) 255 – 262.

DOI: 10.1007/bf00809061

Google Scholar

[5] D. J. Green, R. H. J. Hannink, M. V. Swain, Transformation toughening of ceramics. CRC Press, Boca Raton, 1989.

Google Scholar

[6] M. Tokita, Mechanism of spark plasma sintering, Ceramics, 21 (2010) 605 – 608.

Google Scholar

[7] M.E. Cura, N. Voltsihhin, I. Hussainova, M. Viljus, S-P. Hannula, Effect of carbon content on sinterability and properties of ZrO2 doped WC-cermets, in: T. Otto (Ed.), Proceedings of the 8th international conference of DAAAM Baltic industrial engineering, Tallinn, 2012, p.771 – 776.

Google Scholar

[8] N. Voltsihhin, M.E. Cura, I. Hussainova, S-P. Hannula, Sintering routes for zirconia doped hardmetals, in: T. Otto (Ed.), Proceedings of the 8th international conference of DAAAM Baltic industrial engineering, Tallinn, 2012, p.765 – 770.

DOI: 10.4028/www.scientific.net/kem.527.50

Google Scholar

[9] I. Hussainova, A. Smirnov, M. Antonov, Mechanical characterization and wear performance of WC-ZrO2-Ni cermets produced by hot isostatic pressing. Adv. Mat. Res. 214 (2011) 344 – 348.

DOI: 10.4028/www.scientific.net/amr.214.344

Google Scholar

[10] S. Kim, S-K. Han, J-K. Park, H-E. Kim, Variation of WC grain shape with carbon content in the WC–Co alloys during liquid-phase sintering, Scripta Mater. 48 (2003) 635 – 639.

DOI: 10.1016/s1359-6462(02)00464-5

Google Scholar

[11] A. G. Evans, T. R. Wilshaw, Quasi-static solid particle damage in brittle solids. I. Observations, analysis and implications. Acta Metall. 24 (1976) 939 – 956.

DOI: 10.1016/0001-6160(76)90042-0

Google Scholar

[12] A. G. Evans, E. A. Charles, Fracture toughness determinations by indentation. J. Am. Ceram. Soc. 59 (1976) 371 – 372.

Google Scholar

[13] I. Hussainova, M. Antonov, Assessment of cermets performance in erosive media, Int. J. Mater. Prod. Technol. 28 (2007) 361 – 376.

Google Scholar

[14] Hussainova, I.; Antonov, M.; Voltsihhin, N. (2011) Assessment of zirconia doped hardmetals as tribomaterials. Wear, 271 (2011) 1909 – 1915.

DOI: 10.1016/j.wear.2010.11.034

Google Scholar

[15] A. Evans, M. Golden, M. Rosenblatt, Impact damage in brittle materials. Proc. R. Soc. London Ser, 361 (1978) 343–353.

Google Scholar

[16] H. Reshetnyak, J. Kubarsepp, Resistance of hardmetals to fracture. Powder Metallurgy, 41 (1998) 211 – 216.

DOI: 10.1179/pom.1998.41.3.211

Google Scholar