Thin Films of Liquid Crystalline Phthalocyanines and their its Composites with Single-Walled Carbon Nanotubes: Properties and Alignment

Article Preview

Abstract:

In this study, liquid crystalline copper phthalocyanine and single walled carbon nanotubes were dispersed in solution to prepare novel composites. Thin films of these composites prepared by solving of the composite in dimetylformamide and then by spin coating the solution onto the substrates were studied by the methods of polarizing microscopy, polarized Raman and optical absorption spectroscopies. It was shown that pure CuPcR4 forms the films with a herringbone arrangement of phthalocyanine molecules within adjacent columns. An addition of carbon nanotubes (0.5-2 wt %) to CuPcR4 leads to formation of the films with edge-on orientation of the molecules. The higher conductivity values were found for the films of phthalocyanine containing SWCNT. The lateral conductivity tends to decrease with the increase of SWCNT concentration from 0.5 to 2 wt %.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 531-532)

Pages:

337-341

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Sergeyev, W. Pisula, Y.H. Geerts, Chem. Soc. Rev. Vol. 36 (2007), p.1902.

Google Scholar

[2] L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. Friend, J. MacKenzie, Science Vol. 293 (2001), p.1119.

Google Scholar

[3] M. Rahman, W. Lee, J. Phys. D. Appl. Phys. Vol. 42 (2009), 063001.

Google Scholar

[4] G. Scalia, ChemPhysChem Vol. 11 (2010), p.333.

Google Scholar

[5] H.K. Bisoyi, S. Kumar, J. Mater. Chem. Vol. 18 (2008), p.3032.

Google Scholar

[6] S. Kumar, H.K. Bisoyi, Angew. Chem. Int. Ed. Vol. 46 (2007), p.1501.

Google Scholar

[7] H.K. Bisoyi, S. Kumar, Chem. Soc. Rev. Vol. 40 (2011), p.306.

Google Scholar

[8] I. Dierking, S.E. San, Appl. Phys. Lett. Vol. 87 (2005), p.233507.

Google Scholar

[9] I. Dierking, G. Scalia, P. Morales, J. Appl. Phys. Vol. 97 (2005), 044309

Google Scholar

[10] T.V. Basova, B.A. Kolesov, A.G. Gürek, V. Ahsen, Thin Solid Films Vol. 385 (2001), p.246.

DOI: 10.1016/s0040-6090(01)00779-9

Google Scholar

[11] T. Basova, M.Durmuş, A.G. Gürek,V.Ahsen,A.Hassan,J.Phys.Chem.CVol.113 (2009), p.19251.

Google Scholar

[12] T. Basova, M. Çamur, A.A. Esenpınar, S. Tuncel, A. Hassan, A. Alexeyev, H. Banimuslem, M. Durmuş, A.G. Gürek, V. Ahsen, Synthetic Metals Vol. 162 (2012), p.735.

DOI: 10.1016/j.synthmet.2012.02.006

Google Scholar

[13] M. Wang, Y.-L. Yang, K. Deng, C. Wang, Chem. Phys. Lett. Vol. 439 (2007), p.76.

Google Scholar

[14] R. Poynter, M. Cook, M. Chesters, D. Slater, J. McMurdo, K. Welford, Thin Solid Films Vol. 243 (1994), p.346.

DOI: 10.1016/0040-6090(93)04073-2

Google Scholar