Thin Films of Liquid Crystalline Phthalocyanines and their its Composites with Single-Walled Carbon Nanotubes: Properties and Alignment

Abstract:

Article Preview

In this study, liquid crystalline copper phthalocyanine and single walled carbon nanotubes were dispersed in solution to prepare novel composites. Thin films of these composites prepared by solving of the composite in dimetylformamide and then by spin coating the solution onto the substrates were studied by the methods of polarizing microscopy, polarized Raman and optical absorption spectroscopies. It was shown that pure CuPcR4 forms the films with a herringbone arrangement of phthalocyanine molecules within adjacent columns. An addition of carbon nanotubes (0.5-2 wt %) to CuPcR4 leads to formation of the films with edge-on orientation of the molecules. The higher conductivity values were found for the films of phthalocyanine containing SWCNT. The lateral conductivity tends to decrease with the increase of SWCNT concentration from 0.5 to 2 wt %.

Info:

Periodical:

Key Engineering Materials (Volumes 531-532)

Edited by:

Chunliang Zhang and Liangchi Zhang

Pages:

337-341

Citation:

T. Basova et al., "Thin Films of Liquid Crystalline Phthalocyanines and their its Composites with Single-Walled Carbon Nanotubes: Properties and Alignment", Key Engineering Materials, Vols. 531-532, pp. 337-341, 2013

Online since:

December 2012

Export:

Price:

$38.00

[1] S. Sergeyev, W. Pisula, Y.H. Geerts, Chem. Soc. Rev. Vol. 36 (2007), p. (1902).

[2] L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. Friend, J. MacKenzie, Science Vol. 293 (2001), p.1119.

[3] M. Rahman, W. Lee, J. Phys. D. Appl. Phys. Vol. 42 (2009), 063001.

[4] G. Scalia, ChemPhysChem Vol. 11 (2010), p.333.

[5] H.K. Bisoyi, S. Kumar, J. Mater. Chem. Vol. 18 (2008), p.3032.

[6] S. Kumar, H.K. Bisoyi, Angew. Chem. Int. Ed. Vol. 46 (2007), p.1501.

[7] H.K. Bisoyi, S. Kumar, Chem. Soc. Rev. Vol. 40 (2011), p.306.

[8] I. Dierking, S.E. San, Appl. Phys. Lett. Vol. 87 (2005), p.233507.

[9] I. Dierking, G. Scalia, P. Morales, J. Appl. Phys. Vol. 97 (2005), 044309.

[10] T.V. Basova, B.A. Kolesov, A.G. Gürek, V. Ahsen, Thin Solid Films Vol. 385 (2001), p.246.

DOI: https://doi.org/10.1016/s0040-6090(01)00779-9

[11] T. Basova, M. Durmuş, A.G. Gürek,V. Ahsen,A. Hassan,J. Phys. Chem. CVol. 113 (2009), p.19251.

[12] T. Basova, M. Çamur, A.A. Esenpınar, S. Tuncel, A. Hassan, A. Alexeyev, H. Banimuslem, M. Durmuş, A.G. Gürek, V. Ahsen, Synthetic Metals Vol. 162 (2012), p.735.

DOI: https://doi.org/10.1016/j.synthmet.2012.02.006

[13] M. Wang, Y. -L. Yang, K. Deng, C. Wang, Chem. Phys. Lett. Vol. 439 (2007), p.76.

[14] R. Poynter, M. Cook, M. Chesters, D. Slater, J. McMurdo, K. Welford, Thin Solid Films Vol. 243 (1994), p.346.