[1]
W. Żórawski, S. Skrzypek and J. Trpčevska, Tribological Properties of Hypersonically Sprayed Carbide Coatings FME Transactions (2008) 36, 81-86.
Google Scholar
[2]
A. Wank, B. Wielage, H. Pokhmurska, T. Grund, C. Rupprecht, G. Reisel and E. Friesen, Development and trends in HVOF spraying technology, Surface & Coatings Technology 201 (2006) 2032–(2037).
DOI: 10.1016/j.surfcoat.2006.04.049
Google Scholar
[3]
W. Schedler, Hartmetall für den Praktiker, Aufbau, Herstellung, Eigenschaften und industrielle Anwendung einer modernen Werkstoffgruppe, VDI-Verlag, Düsseldorf, (1988).
Google Scholar
[4]
G. Schiller, M. Müller and F. Gitzhofer, Suspension Plasma Spraying for the Preparation of Perovskite Powders and Coatings, Proceedings of 1st United Thermal Spray Conference - Thermal Spray: A United Forum for Scientific and Technological Advances (1997).
DOI: 10.31399/asm.cp.itsc1997p0349
Google Scholar
[5]
M. Bonneau, F. Gitzhofer and M. Boulos, SOFC/CeO2 Doped Electrolyte Deposition Using Suspension Plasma Spraying, in: Proceedings of 1st International Thermal Spray Conference - Thermal Spray: Surface Engineering via Applied Research 1 (2000).
DOI: 10.31399/asm.cp.itsc2000p0929
Google Scholar
[6]
F. -W. Bach, K. Möhwald, T. Wenz and R. Horstmann, Verarbeiten von kolloidal gelösten Nanopartikeln durch Thermisches Spritzen, in: Tagungsband zum 7. Werkstofftechnischen Kolloquium (2004), pp.232-237.
Google Scholar
[7]
R. Gadow, A. Killinger, M. Kuhn, and D. Lopez, Verfahren und Vorrichtung zum thermischen Spritzen von Suspensionen, German patent DE102005038453A1, (2005).
Google Scholar
[8]
A. Killinger, M. Kuhn, and R. Gadow, High-Velocity Suspension Flame Spraying (HVSFS), A new approach for spraying nanoparticles with hypersonic speed, Surf. Coat. Technol., 2006, 201 (5), p.1922–(1929).
DOI: 10.1016/j.surfcoat.2006.04.034
Google Scholar
[9]
F. - L. Toma, G. Bertrand, D. Klein, L. - M. Berger and S. Thiele, Photocatalytic properties of coatings sprayed from TiOx and Tin−2Cr2O2n−1 powders by APS and VPS, Thermal Spray Solutions: Advanced in Technology and Application, Osaka 2004, Japan, Pub. DVS Verlag (2004).
DOI: 10.31399/asm.cp.itsc2004p0946
Google Scholar
[10]
M. Woydt, Tribological Characteristics of Polycrystalline Magnéli-type, titanium dioxides, Tribology Letters 8 (2000), p.117–130.
Google Scholar
[11]
R. Rauch, A. Manzat, A. Killinger and R. Gadow, HVOF a HVSFS Coatings for Reduction of Wear and Friction in Cylinder Liners, In Thermal Spray 2009, Proceedings of the Int. Thermal Spray Conf., ASM International, 2009, pp.1100-1105.
DOI: 10.31399/asm.cp.itsc2009p1100
Google Scholar
[12]
A. Manzat, A. Killinger and R. Gadow, Application of Supersonic Flame Spraying for Next Generation Cylinder Liner Coatings, in: Sustainable Automotive Technologies 2010, Berlin, Heidelberg: Springer, 2010. ed. J. Wellnitz, ISBN 9783642107962, pp.175-181.
DOI: 10.1007/978-3-642-10798-6_22
Google Scholar
[13]
R. Gadow, A. Killinger, A. Rempp and A. Manzat, Advanced ceramic tribological layers by thermal spray routes, Advances in Science and Technology, Vol. 66, 2010, pp.106-119.
DOI: 10.4028/www.scientific.net/ast.66.106
Google Scholar
[14]
ThyssenKrupp VDM, Crofer® 22 H, Preliminary Material Data Sheet No. 4050, June 2008 Edition.
Google Scholar
[15]
N. Stiegler, A. Killinger and R. Gadow, Hydroxyapatite coatings for biomedical applications deposited by different thermal spray techniques, Surf. Coat. Technol., 2010, 205, pp.1157-1164.
DOI: 10.1016/j.surfcoat.2010.03.059
Google Scholar
[16]
C. Ohtsuki, H. Kushitani, T. Kokubo, S. Kotani and T. Yamamuro: Apatite formation on the surface of Ceravital-type glass-ceramic in the body, J. Biomed. Mater. Res. 25, 1991, pp.1363-1370.
DOI: 10.1002/jbm.820251105
Google Scholar
[17]
T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity ?, Biomaterials 27, 2006, p.2907 – 2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[18]
G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, A. Sola and N. Stiegler, Microstructure and in-vitro behaviour of a novel High Velocity Suspension Flame Sprayed (HVSFS) bioactive glass coating, Surf. Coat. Technol., 2010, 205, pp.1145-1149.
DOI: 10.1016/j.surfcoat.2010.03.063
Google Scholar