High Velocity Thermal Spraying of Powders and Suspensions Containing Micron, Submicron and Nanoparticles for Functional Coatings

Article Preview

Abstract:

Thermal Spraying of submicron and nanoscaled powder materials require the application of agglomerated powders that can be processed with standard HVOLF (High Velocity Oxy Liquid Fuel Flame Spraying) equipment, or the conversion of these powders into a finely dispersed suspension together with an organic solvent, appropriate for suspension spraying (HVSFS: High Velocity Suspension Flame Spraying). Both methods are suitable for the manufacturing of finely structured and dense coatings and offer new possibilities in functional coating development for new application fields. Due to their refined microstructure, mechanical and physical coating properties can differ significantly from their conventionally sprayed counterparts. The paper gives an overview of HVOLF sprayed WC-Co cermets containing submicron and nanocarbides and HVSF sprayed nanooxide ceramics used in numerous technical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-114

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Żórawski, S. Skrzypek and J. Trpčevska, Tribological Properties of Hypersonically Sprayed Carbide Coatings FME Transactions (2008) 36, 81-86.

Google Scholar

[2] A. Wank, B. Wielage, H. Pokhmurska, T. Grund, C. Rupprecht, G. Reisel and E. Friesen, Development and trends in HVOF spraying technology, Surface & Coatings Technology 201 (2006) 2032–(2037).

DOI: 10.1016/j.surfcoat.2006.04.049

Google Scholar

[3] W. Schedler, Hartmetall für den Praktiker, Aufbau, Herstellung, Eigenschaften und industrielle Anwendung einer modernen Werkstoffgruppe, VDI-Verlag, Düsseldorf, (1988).

Google Scholar

[4] G. Schiller, M. Müller and F. Gitzhofer, Suspension Plasma Spraying for the Preparation of Perovskite Powders and Coatings, Proceedings of 1st United Thermal Spray Conference - Thermal Spray: A United Forum for Scientific and Technological Advances (1997).

DOI: 10.31399/asm.cp.itsc1997p0349

Google Scholar

[5] M. Bonneau, F. Gitzhofer and M. Boulos, SOFC/CeO2 Doped Electrolyte Deposition Using Suspension Plasma Spraying, in: Proceedings of 1st International Thermal Spray Conference - Thermal Spray: Surface Engineering via Applied Research 1 (2000).

DOI: 10.31399/asm.cp.itsc2000p0929

Google Scholar

[6] F. -W. Bach, K. Möhwald, T. Wenz and R. Horstmann, Verarbeiten von kolloidal gelösten Nanopartikeln durch Thermisches Spritzen, in: Tagungsband zum 7. Werkstofftechnischen Kolloquium (2004), pp.232-237.

Google Scholar

[7] R. Gadow, A. Killinger, M. Kuhn, and D. Lopez, Verfahren und Vorrichtung zum thermischen Spritzen von Suspensionen, German patent DE102005038453A1, (2005).

Google Scholar

[8] A. Killinger, M. Kuhn, and R. Gadow, High-Velocity Suspension Flame Spraying (HVSFS), A new approach for spraying nanoparticles with hypersonic speed, Surf. Coat. Technol., 2006, 201 (5), p.1922–(1929).

DOI: 10.1016/j.surfcoat.2006.04.034

Google Scholar

[9] F. - L. Toma, G. Bertrand, D. Klein, L. - M. Berger and S. Thiele, Photocatalytic properties of coatings sprayed from TiOx and Tin−2Cr2O2n−1 powders by APS and VPS, Thermal Spray Solutions: Advanced in Technology and Application, Osaka 2004, Japan, Pub. DVS Verlag (2004).

DOI: 10.31399/asm.cp.itsc2004p0946

Google Scholar

[10] M. Woydt, Tribological Characteristics of Polycrystalline Magnéli-type, titanium dioxides, Tribology Letters 8 (2000), p.117–130.

Google Scholar

[11] R. Rauch, A. Manzat, A. Killinger and R. Gadow, HVOF a HVSFS Coatings for Reduction of Wear and Friction in Cylinder Liners, In Thermal Spray 2009, Proceedings of the Int. Thermal Spray Conf., ASM International, 2009, pp.1100-1105.

DOI: 10.31399/asm.cp.itsc2009p1100

Google Scholar

[12] A. Manzat, A. Killinger and R. Gadow, Application of Supersonic Flame Spraying for Next Generation Cylinder Liner Coatings, in: Sustainable Automotive Technologies 2010, Berlin, Heidelberg: Springer, 2010. ed. J. Wellnitz, ISBN 9783642107962, pp.175-181.

DOI: 10.1007/978-3-642-10798-6_22

Google Scholar

[13] R. Gadow, A. Killinger, A. Rempp and A. Manzat, Advanced ceramic tribological layers by thermal spray routes, Advances in Science and Technology, Vol. 66, 2010, pp.106-119.

DOI: 10.4028/www.scientific.net/ast.66.106

Google Scholar

[14] ThyssenKrupp VDM, Crofer® 22 H, Preliminary Material Data Sheet No. 4050, June 2008 Edition.

Google Scholar

[15] N. Stiegler, A. Killinger and R. Gadow, Hydroxyapatite coatings for biomedical applications deposited by different thermal spray techniques, Surf. Coat. Technol., 2010, 205, pp.1157-1164.

DOI: 10.1016/j.surfcoat.2010.03.059

Google Scholar

[16] C. Ohtsuki, H. Kushitani, T. Kokubo, S. Kotani and T. Yamamuro: Apatite formation on the surface of Ceravital-type glass-ceramic in the body, J. Biomed. Mater. Res. 25, 1991, pp.1363-1370.

DOI: 10.1002/jbm.820251105

Google Scholar

[17] T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity ?, Biomaterials 27, 2006, p.2907 – 2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[18] G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, A. Sola and N. Stiegler, Microstructure and in-vitro behaviour of a novel High Velocity Suspension Flame Sprayed (HVSFS) bioactive glass coating, Surf. Coat. Technol., 2010, 205, pp.1145-1149.

DOI: 10.1016/j.surfcoat.2010.03.063

Google Scholar