Overview on Developed Functional Plasma Sprayed Coatings on Glass and Glass Ceramic Substrates

Article Preview

Abstract:

For diverse applications in optical, electronic and consumer industries, the use of glass and glass ceramics as substrates for functional coatings is becoming of outstanding interest in order to develop advanced composites. Atmospheric Plasma Spraying (APS) is an adequate technology for the deposition of a wide variety of materials on glasses. Glass and glass ceramics are characterised by their specific thermo physical properties like low or even negative CTE, low heat conductivity and high dimensional stability. Consequently, modified production processes in comparison to the established coating operations on metal surfaces are required regarding the substrate activation methods or a more accurate heat transfer guidance to the substrate by optimized robot trajectories. This paper aims to give an overview of the investigations carried out at the IMTCCC for the development of plasma sprayed layer composites on borosilicate glass and glass ceramic substrates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-131

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Pawlowski: The Science and Engineering of Thermal Spray Coatings, 2nd ed. (John Wiley & Sons Ltd, Chichester, England, 2008).

Google Scholar

[2] R. Gadow, A. Killinger and C. Li: Int. J. Appl. Ceram. Tec. Vol. 2 (2005), pp.493-503.

Google Scholar

[3] P. Fauchais, A. Vardelle and B. Dussoubs : J. Therm. Spray Technol. Vol. 10 (2001), pp.44-66.

Google Scholar

[4] P. Fauchais: J. Phys. D. Appl. Phys. Vol. 37 (2004), pp.86-108.

Google Scholar

[5] J. R. Davis (ed. ): Handbook of Thermal Spray Technology (ASM International, Materials Park, Ohio, 2004).

Google Scholar

[6] C. J. Friedrich: Atmospheric Plasma Sprayed Dielectrical Oxide Coatings for Ozone Generators (Dissertation, Universität Stuttgart, 2002).

Google Scholar

[7] S. H. Lin and C. H. Wang: J. Hazard. Mater. Vol. B98 (2003), pp.295-309.

Google Scholar

[8] A. Killinger: Funktionskeramische Schichten durch thermokinetische Beschichtungsverfahren (Habilitation, Univesität Stuttgart, 2010).

Google Scholar

[9] F. Gaia and A. Menth, in: Proceedings 5. Ozon-Weltkongreß, Berlin, 1981, pp.325-339.

Google Scholar

[10] U. Kogelschatz and B. Eliasson: Physikalische Blätter Vol. 52 (4) (1996), pp.360-362.

Google Scholar

[11] R. Gadow and G. Riege, German patent, Nr. DE 195 11 001. 3, (1995).

Google Scholar

[12] M. Hirth, European patent, Nr. 0202501B1, (1986).

Google Scholar

[13] U. Kogelschatz, European Patent, Nr. 0019307 A1, (1980).

Google Scholar

[14] M. Fischer, Offenlegunggsschrift Nr. DE 41 07 072 A1, (1991).

Google Scholar

[15] B. Eliasson and U. Kogelschatz: IEEE T. Plasma Sci. Vol. 19 (2) (1991), pp.309-323.

Google Scholar

[16] B. Elvers and S. Hawkins: Encyclopedia of Industrial Chemistry A18 (VHC, 1991).

Google Scholar

[17] R. Gadow, G. Riege, European patent, Nr. 0 817 756 B1, (1996).

Google Scholar

[18] C. J. Friedrich, R. Gadow, S. Günther, A. Killinger and G. Riege, German Patent, Nr. DE 198 22 841A1, (1998).

Google Scholar

[19] C. J. Friedrich, R. Gadow, A. Killinger and C. Li, in: Proceedings of the International Thermal Spraying Conference 2001, Singapur.

Google Scholar

[20] C. Li: Herstellung und Optimierung plasmagespritzter Schichten auf Glaskeramik für elektrische Anwendungen (Dissertation, Universität Stuttgart, 2003).

Google Scholar

[21] A. McDonald, S. Chandra and C. Moreau, in: Proceedings of the InterantionalThermal Spray Conference 2008: Crossing Borders, DVS-Verlag, June 2 - 4 2008 (Maastricht, The Netherlands), ASM International (2008).

Google Scholar

[22] A. McDonald, M. Lamontagne, C. Moreau and S. Chandra: Thin Solid Films Vol. 514 (2006), pp.212-222.

DOI: 10.1016/j.tsf.2006.03.010

Google Scholar

[24] M. Escribano, R. Gadow, A. Killinger and M. Wenzelburger, in: 27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites: B: Ceramic Engineering and Science Proceedings, Volume 24, Issue 4.

DOI: 10.1002/9780470294826.ch29

Google Scholar

[25] C. W. Wegst: Stahlschlüssel – Key to Steel, 19. Aufl., (Verlag Stahlschlüssel Wegst GmbH & Co., Marbach (Neckar), 2001).

DOI: 10.1002/maco.19810320309

Google Scholar

[26] M. Floristán, R. Fontarnau, A. Killinger and R. Gadow: Surf. Coat. Technol. (2010), doi: 10. 1016/j. surfcoat. 2010. 05. 033.

Google Scholar

[27] M. Floristán, R. Gadow, and A. Killinger, in: Proceedings of the International Thermal Spray Conference 2009, ed. by B.R. Marple, M.M. Hyland, Y. -C. Lau, C. -J. Li, R.S. Lima, and G. Montavon, ASM International, Materials Park, Ohio, 2009, p.612.

DOI: 10.31399/asm.cp.itsc2009p0612

Google Scholar

[28] T. Bak, J. Nowotny and C. C. Sorrel: Key Eng. Mater. Vol. 1 (1997), pp.125-126.

Google Scholar

[29] P. Kofstad: Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley-Interscience, New York, 1972).

Google Scholar

[30] Z. M. Jarzebski: Oxide semiconductors (Pergamon Press, Oxford, 1973).

Google Scholar

[31] N. Branland, E. Meillot, P. Fauchais, A. Vardelle, F. Gitzhofer and M. Boulos: Therm. Spray Technol. Vol. 15(1) (2006), pp.53-62.

DOI: 10.1361/105996306x92596

Google Scholar

[32] M. Wenzelburger, M. Escribano and R. Gadow: Surf. Coat. Technol. Vol. 180 (2004), p.429.

Google Scholar

[33] R. McPherson: J. Mater. Sci. Vol. 8 (6) (1973), pp.851-858.

Google Scholar

[34] N. Dejang, A. Watcharapasorn, S. Wirojupatump, P. Niranatlumpong and S. Jiansirisomboon: Surf. Coat. Technol. Vol. 204 (2010), p.1651–1657.

DOI: 10.1016/j.surfcoat.2009.10.052

Google Scholar

[35] L. Zhao, K. Seemann, A. Fischer and E. Lugscheider: Surf. Coat. Technol. Vol. 168 (2003), p.186–190.

Google Scholar

[36] P. Chráska, J. Dubsky, K. Neufuss and J. Píacka: J. Therm. Spray Technol. Vol. 6(3) (1997), pp.320-325.

Google Scholar

[37] L. Pawlowsky: Surf. Coat. Technol. Vol. 35 (1988), pp.285-298.

Google Scholar

[38] S. Yilmaz: Ceram. Int. Vol. 35 (2009), p.2017-(2022).

Google Scholar

[39] R. McPherson: J. Mat. Sci. Vol. 15 (12) (1980), pp.3141-3149.

Google Scholar

[40] S. B. Mishra, K. Chandra and S. Prakash: J. Tribol. Vol. 128 (2006), pp.469-475.

Google Scholar

[41] Y. N. Wu, G. Zhang, Z. C. Feng, B. C. Zhang, Y. Liang and F. J. Liu: Surf. Coat. Technol. Vol. 138 (2000), p.56.

Google Scholar

[42] K. Ramachandran, V. Selvarajan, P. V. Ananthapadmanabhan and K. P. Sreekumar: Thin Solid Films Vol. 315 (1998), p.144.

Google Scholar

[43] A. Ohmori, K-C. Park, M. Inuzuka, Y. Arata, K. Inoue and N. Iwamoto: Thin Solid Films Vol. 201 (1991), p.1.

DOI: 10.1016/0040-6090(91)90149-r

Google Scholar

[44] F. L. Toma, D. Sokolov, G. Bertrand, D. Klein, C. Coddet and C. Meunier: J. Therm. Spray Technol. Vol. 15 (2006), p.576.

Google Scholar

[45] S. Janisson, A. Vardelle, J. F. Coudert, E. Meillot, B. Pateyron and P. Fauchais: J. Therm. Spray Technol., Vol. 8(4) (1999), pp.545-552.

DOI: 10.1361/105996399770350232

Google Scholar

[46] R. B. Heimann: Plasma Spray Coating, 2nd ed. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008).

Google Scholar