Development of Bioactive Hydroxyapatite Coatings on Titanium Alloys

Article Preview

Abstract:

Bioactive coatings are currently manufacturing using plasma-sprayed technique on metal implant surfaces in order to optimize bone-implant interactions. Nevertheless, some problems exist with coating process, e.g. poor interfacial adhesion, modification of coating properties, and the lack of an existing coating standard. In order to overcome some of the problems with the plasma-spraying process, researchers are investigating other experimental coating methods to enhance the adhesion and to control the coating properties. This paper will discuss the advantages and disadvantages of plasma spraying and the experimental coating processes as pulsed laser deposition as well as spin-coated sol-gel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-193

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ho-Rim Lee. Comparative Study of Bond Characteristics between Titanium/Titanium Alloy and ceramic. Ph.D. Thesis. (2004).

Google Scholar

[2] W. José, G. Guilherme, E. Pessanha Henriques, M. Troia Junior, M. Ferraz Mesquita, C. Cliene Dezan. J Appl Oral Sci. 2003; 11(4): 354-360.

Google Scholar

[3] Jia-Horng Lin, Chia-Hao Chang, Yueh-Sheng Chen, Gau-Tyan Lin. Formation of bone-like apatite on titanium filaments incubated in a simulated body fluid by using an electrochemical method. 2007; Composites: Part A, 38(2): 535-539.

DOI: 10.1016/j.compositesa.2006.02.013

Google Scholar

[4] S. Ban, S. Maruno. Biomaterials. 1998; 19: 1245 Cited in: R. Narayanan, Sraboni Dutta, S. K. Seshadri. Hydroxyapatite coatings on Ti-6Al-4V from seashell. Surface & Coatings Technology. 2006; 200: 4720 – 4730.

DOI: 10.1016/j.surfcoat.2005.04.040

Google Scholar

[5] Z. L. Dong, K.A. Khor, C.H. Quek, T.J. White, P. Cheang. TEM and STEM analysis on heat treated and in vitro plasma sprayed hydroxyapatite/Ti-6Al-4V composite coatings. Biomaterials. 2003; 24: 97-105.

DOI: 10.1016/s0142-9612(02)00267-3

Google Scholar

[6] LL. Hench. Bioceramics. J Am Ceram Soc. 1998; 81: 1705–28.

Google Scholar

[7] Szu-Hao Wang, Wei-Jen Shih, Wang-Long Li, Min-Hsiung Hon, Moo-Chin Wang. Morphology of calcium phosphate coatings deposited on a Ti-6Al-4V substrate by an electrolytic method under 80 Torr. Journal of the European Ceramic Society. 2005; 25: 3287-3292.

DOI: 10.1016/j.jeurceramsoc.2004.08.016

Google Scholar

[8] WR. Lacefield Implant Dent 1998; 7(4), 315–22.

Google Scholar

[9] M. Rokkum, A. Reigstad, J Arthroplasty 1999; 14(6): 689–700. 1–2.

Google Scholar

[10] SR. Radin, PJ. Ducheine, Mater. Sci. Mater. Med. 1992; 3, 33.

Google Scholar

[11] MJ. Filiaggi, RM. Pilliar, NA. Coombs, J. Biomed. Mater. Res. 1993; 27, 91.

Google Scholar

[12] J.L. Ong, M. Appleford, S. Oh, Y. Yang, W. -H. Chen, J.D. Bumgardner, and W.O. Haggard, JOM 2006, 67-69.

DOI: 10.1007/s11837-006-0145-2

Google Scholar

[13] C.Y. Yang, B.C. Wang, E. Chang, J.D. Wu, J. Mater. Sci.: Mater. Med. 6, 249 (1995), p.249–257.

Google Scholar

[14] J. Weng, XG. Liu, XD. Li, XD. Zhang, Biomaterials 16, 39 (1995).

Google Scholar

[15] JL. Ong, LA. Harris, LC. Lucas, WR. Lacefield, D. Rigney, J. Am. Ceram. Soc. 1991; 74(9), 2301.

Google Scholar

[16] C.M. Cotell, Pulsed laser deposition of biocompatible thin films, in: D.B. Chrisey, G.K. Hubler (Eds. ), Pulsed Laser Deposition of Thin Films, Wiley, New York, 1994, p.549.

DOI: 10.1557/proc-252-3

Google Scholar

[17] W. Weng, JL. Baptista, J. Mater. Sci.: Mater. Med. 1998; 9, 159.

Google Scholar

[18] H. Monma, J. Mater. Sci. 29 (1994) 949.

Google Scholar

[19] M. Shirkhanzadeh, J. Mater. Sci., Mater. Med. 6 (1995) 90.

Google Scholar

[20] I. Zhitomirsky, L. Gal-or, J. Mater. Sci., Mater. Med. 8 (1997) 213.

Google Scholar

[21] TT. Li, JH. Lee, T. Kobaysi, H. Aoki J. Mater. Sci.: Mater. Med. 1996; 7, 355.

Google Scholar

[22] H. Dasarathy, C. Riley, HD. Coble, WR. Lacefield, G. Maybee J. Biomed. Mater. Res. 1996; 31, 81.

DOI: 10.1002/(sici)1097-4636(199605)31:1<81::aid-jbm10>3.0.co;2-p

Google Scholar

[23] C.Q. Ning, Y. Zhou, H.L. Wang, D.J. Jia, T.C. Lei, J. Mater. Sci. Lett. 19 (2000) 1243/1245.

Google Scholar

[24] X.J. Wang, Y.C. Li, et al, Apatite-inducing ability of titanium oxide layer on titanium surface: The effect of surface energy, J. Mater. Res., 23(6), (2008), pp.1682-1688.

DOI: 10.1557/jmr.2008.0195

Google Scholar

[25] W. Suchanek, M. Yoshimura, J. Mater. Res., 13 (1997), p.94–117.

Google Scholar

[26] Y.C. Yang, E. Chang, Biomaterials, 22, (2001), (13), pp.1827-1836.

Google Scholar

[27] Y.C. Yang, E. Chang, B. H. Hwang, S. Y. Lee, Biomaterials, 21, (2000), (13), pp.1327-1337.

Google Scholar

[28] V. Sergo, O. Sbaizero and D.R. Clarke, Biomaterials 18 (1997), p.477–482.

Google Scholar

[29] Y.C. Tsui, C. Doyle and T.W. Clyne, Biomaterials 19 (1998), p.2015–(2029).

Google Scholar

[30] CY Yang, BC Wang, TM Lee, E Chang, GL. Chang, J Biomed Mater Res 1997; 36: 39–48.

Google Scholar

[31] K. Hayashi, T. Inadome, H. Tsumura, Y. Nakashima, Y. Sugioka, Biomaterials 1994; 15(14): 1187–1191.

DOI: 10.1016/0142-9612(94)90241-0

Google Scholar

[32] S. Wang, WR. Lacefield, JE. Lemons, Interfacial shear strength and histology of plasma sprayed and sintered hydroxyapatite implants in vivo. Biomaterials 1996; 17(20): 1965–(1970).

DOI: 10.1016/0142-9612(96)00020-8

Google Scholar

[33] R. Elsing, O. Knotek, U. Balting, Surf Coat Technol 1990; 43/44: 426–435.

Google Scholar

[34] S. Zhang, Y.S. Wang et al, Engineering Fracture Mechanics, Volume 74, Issue 12, August 2007, Pages 1884-1893.

Google Scholar

[35] YC Yang, E. Chang, Surface and Coatings Technology, Vol 190, Issue 1, 3 January 2005, Pages 122-131.

Google Scholar

[36] Kim. H-W., Knowles J.C., Salih V., Kim H-E., J. of Biom. Mater. Research Part B: Applied Biomaterials, 71B, (2004), p.66 –76.

Google Scholar

[37] Barna Á., Pécz B. and Menyhard M., Micron, 30 (3) (1999) pp.267-276.

DOI: 10.1016/s0968-4328(99)00011-6

Google Scholar

[38] Noyan IC, Cohen JB, Editors. Residual stresses, Stuttgart: Springer-Verlag (1987).

Google Scholar

[39] A. Carradò, Structural, ACS, Applied materials interfaces, 2, 2 (2010) p.561–565.

Google Scholar

[40] Xiong J.Y., Li Y., Hodgson P.D., Wen C., Acta Biomat., in press, doi: 10. 1016/ j. actbio. 2009. 10. 016.

Google Scholar

[41] Søballe K., Acta Orthop. Scand., 64 (255) (1993) 58.

Google Scholar

[42] Changkook Y., Sunho O., Sukyoung K., Journal Of Sol-Gel Science And Technology 21, (2001) p.49–54.

Google Scholar

[43] FJ Garcia-Sanz, MB Mayor, JL Arias, J Pou, B Leo, M. Perez-Amor, Journal of materials science: materials in medicine 8 (1997) 861-865.

DOI: 10.1023/a:1018549720873

Google Scholar

[44] J.S. Sun, Y.H. Tsuang, W.H.S. Chang, J. Li, , H.C. Liu, F.H. Lin, Biomater., 18 (1997), p.683–690.

Google Scholar

[45] J.T. Ninomiya et al., J. Ortho. Res., 19 (2001), p.621–628.

Google Scholar

[46] F.C.M. Driessens et al., Biomaterials Engineering and Devices. Human Applications. Volume 2, ed.

Google Scholar

[47] J. Huang et al., J. Mater. Sci.: Mater. in Med., 15 (2004), p.441–445.

Google Scholar

[48] S. Zhang, D. Sun, Y. Fu, H. Du, Q. Zhang, Diam Relat Mater 13 (2004) (10), p.1777.

Google Scholar

[49] T.G. Nieh, A.F. Jankowski J. Koike J. Mater. Res., 16, 11(2001), p.3238, 3245.

Google Scholar