Characterization and Tribological Performance of Cu-Based Intermetallic Layers

Article Preview

Abstract:

Fluidized bed reactor chemical vapor deposition (FBR-CVD) has been used to enrich the surface of oxygen free high conductivity (OFHC) copper with titanium, silicon and aluminum. This technique enables the production of coherent and adherent intermetallic surface layers of uniform thickness and high hardness. The characterization of the coatings was performed using backscatter scanning electron microscopy (BS-SEM), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES) and micro-hardness. The tribological properties of the coatings in dry sliding contact with steel were evaluated by pin-on-disc wear testing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-200

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Subramanian, G. Cavallaro and G. Winkelman, Wear, 241 (2000); 228.

Google Scholar

[2] F. Liu, C. Liu, S. Chen, X. Tao, Z. Xu and M. Wang, Surface and Coatings Technology, 201 (2007); 6332.

Google Scholar

[3] H. Yana, A. Wanga, K. Xua, W. Wang and Z. Huanga, Journal of Alloys and Compounds, 505 (2010); 645.

Google Scholar

[4] H. Yan, P. Zhang, Z. Yu, Q. Lu, S. Yang and C. Li, Surface and Coatings Technology, 206 (2012); 4046.

Google Scholar

[5] G. Dehm, B. Medres, L. Shepeleva, C. Scheu, M. Bamberger, B.L. Mordike, S. Mordike, G. Ryk, G. Halperin and I. Etsion, Wear, 225–229 (1999); 18.

DOI: 10.1016/s0043-1648(98)00347-0

Google Scholar

[6] I. Manna, J. Dutta Majumdar, U.K. Chatterjee and A.K. Nath, Scripta Materialia, 35(3) (1996); 405.

Google Scholar

[7] M. Li, M. Chao, E. Liang, J. Yu, J. Zhang and D. Li, Applied Surface Science, 258 (2011); 1599.

Google Scholar

[8] Y-z. Zhang, Y. Tu, M-z. Xi and L-k. Shi, Surface and Coatings Technology 202 (2008); 5924.

Google Scholar

[9] W-m. Song, G-r. Yang, J-j. Luc, Y. Hao and Y. Ma, Wear, 262 (2007); 868.

Google Scholar

[10] J.M. Guilemany, J. Nutting, V.V. Sobolev, Z. Dong, J.M. de Pace, J.A. Calero and J. Fernandez, Material Science and Engineering, A232 (1997); 119.

Google Scholar

[11] H. Hamatani and Y. Miyazaki, Surface and Coatings and. Technology, 154 (2002); 176.

Google Scholar

[12] Z.Y. Shi, D.Q. Wang and Z.M. Ding, Applied Surface Science, 221 (2004); 62.

Google Scholar

[13] C. Guo, J. Zhou, Y. Yu, L. Wang, H. Zhou and J. Chen, Materials and Design, 36 (2012); 482.

Google Scholar

[14] K. Ralston, D. Fabijanic, R.T. Jones and N. Birbilis, Corrosion Science, 53(9) (2011); 2835.

Google Scholar

[15] S. Kinkel, G. N. Angelopoulos and W. Dahl, Surface and Coatings Technology, 64 (1994); 119.

Google Scholar

[16] N. Voudouris, Ch. Christoglou and G.N. Angelopoulos, Surface and Coatings Technology, 141 (2001); 275.

Google Scholar

[17] F.J. Perez, M.P. Hierro, J.A. Trilleros, M.C. Carpintero, L. Sanchez, J.M. Brossard and F.J. Bolıvar, Intermetallics, 14 (2006); 811.

Google Scholar

[18] A. Sanjurjo, B.J. Wood, K.H. Lau, G.T. Tong, D.K. Choi, M.C.H. McKubre, H.K. Song, D. Peters and N. Church, Surface and Coatings Technology, 49 (1991); 103.

DOI: 10.1016/0257-8972(91)90039-y

Google Scholar

[19] A. Sanjurjo, B.J. Wood, K.H. Lau, G.T. Tong, D.K. Choi, M.C.H. McKubre, H.K. Song and N. Church, Surface and Coatings Technology, 49 (1991); 110.

DOI: 10.1016/0257-8972(91)90040-4

Google Scholar

[20] K.H. Lau, A. Sanjurjo and B.J. Wood, Surface and Coatings Technology, 54-55 (1992); 234.

Google Scholar

[21] Alloy Phase Diagrams, ASM Handbook, vol. 3, ASM International, Materials Park, (1992).

Google Scholar

[22] G.N. Angelopoulos, S. Kinkel and N. Voudouris, Surface and Coatings Technology, 78 (1996); 72.

Google Scholar