[1]
F. Kawashima, T. Igari, Y. Miyoshi, Y. Kamito, M. Tanihira, High temperature strength and inelastic behavior of plate-fin structures for HTGR, Nucl. Eng. Des. 237 (2007) 591-599.
DOI: 10.1016/j.nucengdes.2006.09.007
Google Scholar
[2]
M. Ando, H. Takasyo, N. Kawasaki, N. Kasahara, Stress mitigation design of tubesheets with consideration of thermal stress inducement mechanism, Proceeding of ASME 2008 Pressure Vessels and Piping Conference, vol. 1, ASME, 2008, pp.701-710.
DOI: 10.1115/pvp2008-61320
Google Scholar
[3]
N. Ohno, K. Ikenoya, D. Okumura, T. Matsuda, Homogenized elastic-viscoplastic behavior of anisotropic open-porous bodies with pore pressure, Int. J. Solids Struct. (2012), http: /dx. doi. org/10. 1016/j. ijsolstr. 2012. 02. 014.
DOI: 10.1016/j.ijsolstr.2012.02.014
Google Scholar
[4]
P.M. Suquet, Elements of homogenization for inelastic solid mechanics, In: E. Snchez-Palencia, A. Zaoui (Eds. ), Homogenization Techniques for Composite Media, Lecture Notes in Physics, vol. 272, Springer Verlag, Berlin, 1987, pp.193-278.
DOI: 10.1007/3-540-17616-0
Google Scholar
[5]
X. Wu, N. Ohno, A homogenization theory for time-dependent nonlinear composites with periodic internal structures, Int. J. Solids Struct. 36 (1999) 4991-5012.
DOI: 10.1016/s0020-7683(98)00236-4
Google Scholar
[6]
R. Hill, The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids 15 (1967) 79-95.
DOI: 10.1016/0022-5096(67)90018-x
Google Scholar
[7]
K. Terzaghi, Theoretical Soil Mechanics, John Wiley and Sons, New York, (1943).
Google Scholar
[8]
O. Coussy, Mechanics and Physics of Porous Solids, John Wiley & Sons, Chichester, (2010).
Google Scholar
[9]
M.A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys. 12 (1941) 155-164.
Google Scholar
[10]
L. Dormieux, A. Molinari, D. Kondo, Micromechanical approach to the behavior of poroelastic materials, J. Mech. Phys. Solids 50 (2002) 2203-2231.
DOI: 10.1016/s0022-5096(02)00008-x
Google Scholar
[11]
R. von Mises, Mechanik der plastischen formänderung von kristallen, Z. Angew. Math. Mech. 8 (1928) 161-185.
DOI: 10.1002/zamm.19280080302
Google Scholar
[12]
X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, J.D. Bartout, P. Ienny, M. Croset, H. Bernet, Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials, Mater. Sci. Eng. A 289 (2000).
DOI: 10.1016/s0921-5093(00)00898-4
Google Scholar
[13]
Z.Y. Xue, J.W. Hutchinson, Constitutive model for quasi-static deformation of metallic sandwich cores, Int. J. Numer. Meth. Eng. 61 (2004) 2205-2238.
DOI: 10.1002/nme.1142
Google Scholar
[14]
M. Tsuda, E. Takemura, T. Asada, N. Ohno, T. Igari, Homogenized elastic-viscoplastic behavior of plate-fin structures at high temperatures: numerical analysis and macroscopic constitutive modeling, Int. J. Mech. Sci. 52 (2010) 648-656.
DOI: 10.1016/j.ijmecsci.2009.06.007
Google Scholar
[15]
M. Tsuda, N. Ohno, Duplex model for homogenized elastic-viscoplastic behavior of plate-fin structures at high temperatures, Int. J. Plasticity 27 (2011) 1560-1576.
DOI: 10.1016/j.ijplas.2010.10.011
Google Scholar
[16]
K. Ikenoya, N. Takano, N. Ohno, N. Kasahara, Homogenized elastic-viscoplastic behavior of thick perforated plates with pore pressure, 11th Asia-Pacific Conference on Engineering Plasticity and Its Applications, Dec. 5-7, 2012, Singapore, (to be presented).
DOI: 10.4028/www.scientific.net/kem.535-536.401
Google Scholar