Homogenized Elastic-Viscoplastic Behavior of Anisotropic Open-Porous Bodies

Article Preview

Abstract:

This lecture presents constitutive modeling of the homogenized elastic-viscoplastic behavior of pore-pressurized anisotropic open-porous bodies. The base solids are assumed to be metallic materials at small strains and rotations. First, by describing micro-macro relations relevant to periodic unit cells of anisotropic open-porous bodies with pore pressure, constitutive features are discussed for the viscoplastic macrostrain rate in steady states. Second, on the basis of the constitutive features found, the viscoplastic macrostrain rate is represented as an anisotropic function of Terzaghi’s effective stress. Third, the resulting viscoplastic equation is used to simulate the homogenized elastic-viscoplastic behavior of an ultrafine plate-fin structure and a thick perforated plate subjected to macroscopic loading in the absence and presence of pore pressure. The corresponding FE homogenization analysis is performed for comparison to validate the developed viscoplastic equation.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 535-536)

Pages:

12-17

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Kawashima, T. Igari, Y. Miyoshi, Y. Kamito, M. Tanihira, High temperature strength and inelastic behavior of plate-fin structures for HTGR, Nucl. Eng. Des. 237 (2007) 591-599.

DOI: 10.1016/j.nucengdes.2006.09.007

Google Scholar

[2] M. Ando, H. Takasyo, N. Kawasaki, N. Kasahara, Stress mitigation design of tubesheets with consideration of thermal stress inducement mechanism, Proceeding of ASME 2008 Pressure Vessels and Piping Conference, vol. 1, ASME, 2008, pp.701-710.

DOI: 10.1115/pvp2008-61320

Google Scholar

[3] N. Ohno, K. Ikenoya, D. Okumura, T. Matsuda, Homogenized elastic-viscoplastic behavior of anisotropic open-porous bodies with pore pressure, Int. J. Solids Struct. (2012), http: /dx. doi. org/10. 1016/j. ijsolstr. 2012. 02. 014.

DOI: 10.1016/j.ijsolstr.2012.02.014

Google Scholar

[4] P.M. Suquet, Elements of homogenization for inelastic solid mechanics, In: E. Snchez-Palencia, A. Zaoui (Eds. ), Homogenization Techniques for Composite Media, Lecture Notes in Physics, vol. 272, Springer Verlag, Berlin, 1987, pp.193-278.

DOI: 10.1007/3-540-17616-0

Google Scholar

[5] X. Wu, N. Ohno, A homogenization theory for time-dependent nonlinear composites with periodic internal structures, Int. J. Solids Struct. 36 (1999) 4991-5012.

DOI: 10.1016/s0020-7683(98)00236-4

Google Scholar

[6] R. Hill, The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids 15 (1967) 79-95.

DOI: 10.1016/0022-5096(67)90018-x

Google Scholar

[7] K. Terzaghi, Theoretical Soil Mechanics, John Wiley and Sons, New York, (1943).

Google Scholar

[8] O. Coussy, Mechanics and Physics of Porous Solids, John Wiley & Sons, Chichester, (2010).

Google Scholar

[9] M.A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys. 12 (1941) 155-164.

Google Scholar

[10] L. Dormieux, A. Molinari, D. Kondo, Micromechanical approach to the behavior of poroelastic materials, J. Mech. Phys. Solids 50 (2002) 2203-2231.

DOI: 10.1016/s0022-5096(02)00008-x

Google Scholar

[11] R. von Mises, Mechanik der plastischen formänderung von kristallen, Z. Angew. Math. Mech. 8 (1928) 161-185.

DOI: 10.1002/zamm.19280080302

Google Scholar

[12] X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, J.D. Bartout, P. Ienny, M. Croset, H. Bernet, Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials, Mater. Sci. Eng. A 289 (2000).

DOI: 10.1016/s0921-5093(00)00898-4

Google Scholar

[13] Z.Y. Xue, J.W. Hutchinson, Constitutive model for quasi-static deformation of metallic sandwich cores, Int. J. Numer. Meth. Eng. 61 (2004) 2205-2238.

DOI: 10.1002/nme.1142

Google Scholar

[14] M. Tsuda, E. Takemura, T. Asada, N. Ohno, T. Igari, Homogenized elastic-viscoplastic behavior of plate-fin structures at high temperatures: numerical analysis and macroscopic constitutive modeling, Int. J. Mech. Sci. 52 (2010) 648-656.

DOI: 10.1016/j.ijmecsci.2009.06.007

Google Scholar

[15] M. Tsuda, N. Ohno, Duplex model for homogenized elastic-viscoplastic behavior of plate-fin structures at high temperatures, Int. J. Plasticity 27 (2011) 1560-1576.

DOI: 10.1016/j.ijplas.2010.10.011

Google Scholar

[16] K. Ikenoya, N. Takano, N. Ohno, N. Kasahara, Homogenized elastic-viscoplastic behavior of thick perforated plates with pore pressure, 11th Asia-Pacific Conference on Engineering Plasticity and Its Applications, Dec. 5-7, 2012, Singapore, (to be presented).

DOI: 10.4028/www.scientific.net/kem.535-536.401

Google Scholar