Preliminary Study on Ductile Fracture of Imperfect Lattice Materials

Article Preview

Abstract:

The ductile fracture behavior of two-dimensional imperfect lattice material under dynamic stretching is studied by finite element analyses (FEA). Three isotopic lattice materials, including the regular hexagonal honeycomb, the Kagome lattice and the regular triangular lattice, are taken into account, which are made of an elastic/visco-plastic metal material. Two typical imperfections (vacancy defect and rigid inclusion) are introduced separately. The numerical results reveal novel deformation modes and crack growth patterns in the ductile fracture of lattice material. Various crack growth patterns as defined according to their profiles, such as “X”-type, “Butterfly”-type, “Petal”-type. Crack propagation could induce severe material softening and plastic dissipation of the lattices. Subsequently, the effects of the strain rate, relative density, microstructure topology, and defect type on the crack growth pattern, the associated macroscopic material softening and the knock-down of total plastic dissipation are investigated.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 535-536)

Pages:

18-24

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.S. Deshpande, N.A. Fleck, M.F. Ashby, Effective properties of the octet-truss lattice material, J. Mech. Phys. Solids 49 (2001) 1747-1769.

DOI: 10.1016/s0022-5096(01)00010-2

Google Scholar

[2] A.G. Evans, J.W. Hutchinson, M.F. Ashby, Multifunctionality of cellular metal systems, Prog. Mater. Sci. 43 (1998) 171-221.

Google Scholar

[3] H.N.G. Wadley, Multifunctional periodic cellular metals, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 364 (2006) 31-68.

Google Scholar

[4] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, (1997).

Google Scholar

[5] S. Torquato, L.V. Gibiansky, M.J. Silva, L.J. Gibson, Effective mechanical and transport properties of cellular solids, Int. J. Mech. Sci. 40 (1998), 71-82.

DOI: 10.1016/s0020-7403(97)00031-3

Google Scholar

[6] S.D. Papka, S. Kyriakides, Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb, Acta Mater. 46 (1998), 2765-2776.

DOI: 10.1016/s1359-6454(97)00453-9

Google Scholar

[7] A.J. Wang, D.L. McDowell, Yield surfaces of various periodic metal honeycombs at intermediate relative density, Int. J. Plast. 21 (2005), 285-320.

DOI: 10.1016/j.ijplas.2003.12.002

Google Scholar

[8] Y.H. Zhang, X.M. Qiu, D.N. Fang, Mechanical properties of two novel planar lattice structures, Int. J. Solids Struct. 45 (2008), 3751-3768.

DOI: 10.1016/j.ijsolstr.2007.10.005

Google Scholar

[9] C. Chen, T.J. Lu, N.A. Fleck, Effect of imperfections on the yielding of two-dimensional foams, J. Mech. Phys. Solids. 47 (1999), 2235-2272.

DOI: 10.1016/s0022-5096(99)00030-7

Google Scholar

[10] J.L. Grenestedt, Influence of imperfections on effective properties of cellular solids, Mater. Res. Soc. Symp. Proc. 521 (1998), 3-13.

DOI: 10.1557/proc-521-3

Google Scholar

[11] M.J. Silva, W.C. Hayes, L.J. Gibson, The effects of non-periodic microstructure on the elastic properties of 2-dimensional cellular solids, Int. J. Mech. Sci. 37 (1995), 1161-1177.

DOI: 10.1016/0020-7403(94)00018-f

Google Scholar

[12] D.D. Symons, N.A. Fleck, The imperfection sensitivity of isotropic two-dimensional elastic lattices, J. Appl. Mech. -Trans. ASME 75 (2008), 051011.

DOI: 10.1115/1.2913044

Google Scholar

[13] J.S. Huang, L.J. Gibson, Fracture-toughness of brittle honeycombs, Acta Metall. Mater. 39 (1991), 1617-1626.

DOI: 10.1016/0956-7151(91)90249-z

Google Scholar

[14] S.K. Maiti, M.F. Ashby, Fracture-toughness of brittle cellular solids, Scripta Metall. Mater. 18 (1984), 213-217.

DOI: 10.1016/0036-9748(84)90510-6

Google Scholar

[15] N.A. Fleck, X.M. Qiu, The damage tolerance of elastic-brittle, two-dimensional isotropic lattices, J. Mech. Phys. Solids 55 (2007), 562-588.

DOI: 10.1016/j.jmps.2006.08.004

Google Scholar

[16] F. Lipperman, M. Ryvkin, M.B. Fuchs, Fracture toughness of two-dimensional cellular material with periodic microstructure, Int. J. Fract. 146 (2007), 279-290.

DOI: 10.1007/s10704-007-9171-5

Google Scholar

[17] F. Lipperman, M. Ryvkin, M.B. Fuchs, Nucleation of cracks in two-dimensional periodic cellular materials, Comput. Mech. 39 (2007), 127-139.

DOI: 10.1007/s00466-005-0014-9

Google Scholar

[18] L.I. Slepyan, Feeding and dissipative waves in fracture and phase transition I. Some 1D structures and a square-cell lattice, J. Mech. Phys. Solids 49 (2001), 469-511.

DOI: 10.1016/s0022-5096(00)00064-8

Google Scholar

[19] L.I. Slepyan, Feeding and dissipative waves in fracture and phase transition II. Phase-transition waves, J. Mech. Phys. Solids 49 (2001), 513-550.

DOI: 10.1016/s0022-5096(00)00083-1

Google Scholar

[20] L.I. Slepyan, Feeding and dissipative waves in fracture and phase transition. III. Triangular-cell lattice, J. Mech. Phys. Solids 49 (2001), 2839-2875.

DOI: 10.1016/s0022-5096(01)00053-9

Google Scholar

[21] L.I. Slepyan, Crack in a material-bond lattice, J. Mech. Phys. Solids 53 (2005), 1295-1313.

Google Scholar

[22] I. Schmidt, N.A. Fleck, Ductile fracture of two-dimensional cellular structures, Int. J. Fract. 117 (2001), 327-342.

Google Scholar

[23] V.B. Shenoy, L.B. Freund, Necking bifurcations during high strain rate extension, J. Mech. Phys. Solids 47 (1999), 2209-2233.

DOI: 10.1016/s0022-5096(99)00031-9

Google Scholar

[24] G.R. Johnson, W.H. Cook, Fracture Characteristics of 3 Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech. 21 (1983), 31-48.

DOI: 10.1016/0013-7944(85)90052-9

Google Scholar

[25] G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subject to Large Strains, High Strain Rates and High Temperatures, Seventh International Symposium on Ballistics, The Hague, The Netherlands, (1983).

Google Scholar

[26] L.B. Freund, Dynamical Fracture Mechanics, Cambridge University Press, New York, (1990).

Google Scholar

[27] Y.H. Zhang, Z.Y. Xue, X.M. Qiu, D.N. Fang, Plastic Yield and Collapse Mechanism of Planar Lattice Structures, J. Mech. Mater. Struct. 3 (2008), 1257-1277.

DOI: 10.2140/jomms.2008.3.1257

Google Scholar