Microstructure Evolution of Ti-46.5Al-2Nb-2Cr at Different Strain Rates and Temperatures

Article Preview

Abstract:

The microstructure evolution of Ti-46.5Al-2Nb-2Cr with different microstructure types loaded under a large range of strain rates and elevated temperatures is investigated by TEM. The results show that deformation twins are the main deformation mode under high strain rate loadings and both ordinary dislocation and super-dislocation are the additional modes under quasi-static loadings. The proportion of twinned grains increases with the increased strain rates.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 535-536)

Pages:

509-513

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Song, S., G.T. Gray III, Influence of temperature and strain rate on slip and twinning behavior of zr. Metallurgical and Materials Transactions A, 1995. 26(10): pp.2665-2675.

DOI: 10.1007/bf02669423

Google Scholar

[2] Kim, Y.-W., Ordered Intermetallic Alloy Part III: Gamma Titanium Aluminides. JOM, 1994. 46: pp.30-39.

DOI: 10.1007/bf03220745

Google Scholar

[3] Marketz, W.T., F.D. Fischer, H. Clemens, Deformation mechanisms in TiAl intermetallics--experiments and modeling. International Journal of Plasticity, 2003. 19(3): pp.281-321.

DOI: 10.1016/s0749-6419(01)00036-5

Google Scholar

[4] Shechtman, D., M. Blackburn, H. Lipsitt, The plastic deformation of TiAl. Metallurgical Transactions, 1974. 5(6): pp.1373-1381.

DOI: 10.1007/bf02646623

Google Scholar

[5] Appel, F., R. Wagner, Microstructure and deformation of two-phase g-titanium aluminides. Materials Science and Engineering: R: Reports, 1998. 22(5): pp.187-268.

DOI: 10.1016/s0927-796x(97)00018-1

Google Scholar

[6] Wu, X., Review of alloy and process development of TiAl alloys. Intermetallics, 2006. 14(10–11): pp.1114-1122.

DOI: 10.1016/j.intermet.2005.10.019

Google Scholar

[7] Yamaguchi, M., H. Inui, S. Yokoshima, K. Kishida, D.R. Johnson, Recent progress in our understanding of deformation and fracture of two-phase and single-phase TiAl alloys. Materials Science and Engineering: A, 1996. 213(1-2): pp.25-31.

DOI: 10.1016/0921-5093(96)10242-2

Google Scholar

[8] Jin, Z., C. Cady, G.T. Gray III, Y.-W. Kim, Mechanical Behavior of a Fine-Grained Duplex Gamma-TiAl Alloy. Metallurgical and Materials Transactions A, 2000. 31: pp.1007-1016.

DOI: 10.1007/s11661-000-0042-1

Google Scholar

[9] Maloy, S.A., G.T. Gray III, High strain rate deformation of Ti48Al2Nb2Cr. Acta Materialia, 1996. 44(5): pp.1741-1756.

DOI: 10.1016/1359-6454(95)00329-0

Google Scholar

[10] Sun, Z.M., T. Kobayashi, H. Fukumasu, I. Yamamoto, K. Shibue, Tensile Properties and Fracture Toughness of a Ti-45Al-1.6Mn Alloy at Loading Velocities of up to 12m/s. Metallurgical and Materials Transactions A, 1998. 29: pp.263-277.

DOI: 10.1007/s11661-998-0178-y

Google Scholar

[11] Huang, W., X. Zan, X. Nie, M. Gong, Y. Wang, Y.M. Xia, Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperatures. Materials Science and Engineering A, 2007. 443(1-2): pp.33-41.

DOI: 10.1016/j.msea.2006.06.041

Google Scholar

[12] Zan, X., Y. Wang, Y. Xia, Y. He, Strain rate effect on the tensile behavior of Duplex Ti-46.5Al-2Nb-2Cr intermetallics at elevated temperatures. Materials Science and Engineering: A, 2008. 498(1-2): pp.296-301.

DOI: 10.1016/j.msea.2008.08.002

Google Scholar

[13] Zan, X., Y.-h. He, Y. Wang, Y.-m. Xia, Dynamic behavior and fracture mode of TiAl intermetallics with different microstructures at elevated temperatures. Transactions of Nonferrous Metals Society of China, 2011. 21(1): pp.45-51.

DOI: 10.1016/s1003-6326(11)60676-6

Google Scholar

[14] Imayev, V.M., R.M. Imayev, G.A. Salishchev, K.B. Povarova, M.R. Shagiev, A.V. Kuznetsov, Effect of strain rate on twinning and room temperature ductility of TiAl with fine equiaxed microstructure. Scripta Materialia, 1997. 36(8): pp.891-897.

DOI: 10.1016/s1359-6462(96)00465-4

Google Scholar

[15] Reed-Hill, R., R. Abbaschian, Physical Metallurgy Principles. 3rd ed. 1992, Boston, MA: PWS-Kent.

Google Scholar

[16] Meyers, M.A., O. Vohringer, V.A. Lubarda, The onset of twinning in metals: a constitutive description. Acta Materialia, 2001. 49(19): pp.4025-4039.

DOI: 10.1016/s1359-6454(01)00300-7

Google Scholar