[1]
Song, S., G.T. Gray III, Influence of temperature and strain rate on slip and twinning behavior of zr. Metallurgical and Materials Transactions A, 1995. 26(10): pp.2665-2675.
DOI: 10.1007/bf02669423
Google Scholar
[2]
Kim, Y.-W., Ordered Intermetallic Alloy Part III: Gamma Titanium Aluminides. JOM, 1994. 46: pp.30-39.
DOI: 10.1007/bf03220745
Google Scholar
[3]
Marketz, W.T., F.D. Fischer, H. Clemens, Deformation mechanisms in TiAl intermetallics--experiments and modeling. International Journal of Plasticity, 2003. 19(3): pp.281-321.
DOI: 10.1016/s0749-6419(01)00036-5
Google Scholar
[4]
Shechtman, D., M. Blackburn, H. Lipsitt, The plastic deformation of TiAl. Metallurgical Transactions, 1974. 5(6): pp.1373-1381.
DOI: 10.1007/bf02646623
Google Scholar
[5]
Appel, F., R. Wagner, Microstructure and deformation of two-phase g-titanium aluminides. Materials Science and Engineering: R: Reports, 1998. 22(5): pp.187-268.
DOI: 10.1016/s0927-796x(97)00018-1
Google Scholar
[6]
Wu, X., Review of alloy and process development of TiAl alloys. Intermetallics, 2006. 14(10–11): pp.1114-1122.
DOI: 10.1016/j.intermet.2005.10.019
Google Scholar
[7]
Yamaguchi, M., H. Inui, S. Yokoshima, K. Kishida, D.R. Johnson, Recent progress in our understanding of deformation and fracture of two-phase and single-phase TiAl alloys. Materials Science and Engineering: A, 1996. 213(1-2): pp.25-31.
DOI: 10.1016/0921-5093(96)10242-2
Google Scholar
[8]
Jin, Z., C. Cady, G.T. Gray III, Y.-W. Kim, Mechanical Behavior of a Fine-Grained Duplex Gamma-TiAl Alloy. Metallurgical and Materials Transactions A, 2000. 31: pp.1007-1016.
DOI: 10.1007/s11661-000-0042-1
Google Scholar
[9]
Maloy, S.A., G.T. Gray III, High strain rate deformation of Ti48Al2Nb2Cr. Acta Materialia, 1996. 44(5): pp.1741-1756.
DOI: 10.1016/1359-6454(95)00329-0
Google Scholar
[10]
Sun, Z.M., T. Kobayashi, H. Fukumasu, I. Yamamoto, K. Shibue, Tensile Properties and Fracture Toughness of a Ti-45Al-1.6Mn Alloy at Loading Velocities of up to 12m/s. Metallurgical and Materials Transactions A, 1998. 29: pp.263-277.
DOI: 10.1007/s11661-998-0178-y
Google Scholar
[11]
Huang, W., X. Zan, X. Nie, M. Gong, Y. Wang, Y.M. Xia, Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperatures. Materials Science and Engineering A, 2007. 443(1-2): pp.33-41.
DOI: 10.1016/j.msea.2006.06.041
Google Scholar
[12]
Zan, X., Y. Wang, Y. Xia, Y. He, Strain rate effect on the tensile behavior of Duplex Ti-46.5Al-2Nb-2Cr intermetallics at elevated temperatures. Materials Science and Engineering: A, 2008. 498(1-2): pp.296-301.
DOI: 10.1016/j.msea.2008.08.002
Google Scholar
[13]
Zan, X., Y.-h. He, Y. Wang, Y.-m. Xia, Dynamic behavior and fracture mode of TiAl intermetallics with different microstructures at elevated temperatures. Transactions of Nonferrous Metals Society of China, 2011. 21(1): pp.45-51.
DOI: 10.1016/s1003-6326(11)60676-6
Google Scholar
[14]
Imayev, V.M., R.M. Imayev, G.A. Salishchev, K.B. Povarova, M.R. Shagiev, A.V. Kuznetsov, Effect of strain rate on twinning and room temperature ductility of TiAl with fine equiaxed microstructure. Scripta Materialia, 1997. 36(8): pp.891-897.
DOI: 10.1016/s1359-6462(96)00465-4
Google Scholar
[15]
Reed-Hill, R., R. Abbaschian, Physical Metallurgy Principles. 3rd ed. 1992, Boston, MA: PWS-Kent.
Google Scholar
[16]
Meyers, M.A., O. Vohringer, V.A. Lubarda, The onset of twinning in metals: a constitutive description. Acta Materialia, 2001. 49(19): pp.4025-4039.
DOI: 10.1016/s1359-6454(01)00300-7
Google Scholar