Key Engineering Materials
Vol. 542
Vol. 542
Key Engineering Materials
Vol. 541
Vol. 541
Key Engineering Materials
Vol. 540
Vol. 540
Key Engineering Materials
Vol. 539
Vol. 539
Key Engineering Materials
Vol. 538
Vol. 538
Key Engineering Materials
Vol. 537
Vol. 537
Key Engineering Materials
Vols. 535-536
Vols. 535-536
Key Engineering Materials
Vol. 534
Vol. 534
Key Engineering Materials
Vol. 533
Vol. 533
Key Engineering Materials
Vols. 531-532
Vols. 531-532
Key Engineering Materials
Vols. 529-530
Vols. 529-530
Key Engineering Materials
Vol. 528
Vol. 528
Key Engineering Materials
Vol. 527
Vol. 527
Key Engineering Materials Vols. 535-536
Paper Title Page
Abstract: Recently, the demand for energy is growing at a very high rate all over the world. The fossil fuels eventually lead to the foreseeable depletion of limited fossil energy resources. Hydrogen is considered a promising candidate to remedy the depletion of fossil fuels. The bipolar plate is the second most important component of a proton exchange membrance (PEM) fuel cell stack after the membrance electrode assembly (MEA). Its primary roles are to supply reactant gases to the fuel cell electrodes and provide electrical connection between adjacent cells in the stack while removing product water from the cell and transferring away the heat of reaction. Historically, machined graphite had been chosen as a good compromise between all of these requirements, but alternatives are emerging. New materials are light metals. In this study, rubber pad forming process was employed as the manufacturing method for metallic bipolar plates. The rubber pad and the sheet metal plate were pressed together by the punch, and the repulsive force of the deformed rubber is loaded at the plate, and can contribute to improving formability. And then, its surface was coated with TiN. After coating process, the performance characteristics of single stack in the condition of PEMFC using the metal bipolar plate have been investigated.
310
Abstract: This paper presents an approach for the development and optimization of the NC-form grinding technology for an efficient machining of carbon fibre reinforced silicon carbide composite (C/SiC). The C/SiC properties, the importance and the necessity of the application of a high performance grinding process for the machining of this innovative composite material are introduced first. Then, the methodologies and the experimental investigations of NC-form grinding with the application of several machining parameters and three distinct bond types (vitrified, metal and synthetic resin) of diamond mounted points for the abrasive machining of C/SiC are presented. In order to monitor and analyze the process, grinding forces, surface integrity of ground workpieces and grinding wheel wear are investigated. The results of this paper provide new information regarding the wear behavior of grinding tools and the optimized conditions for grinding of C/SiC
314
Abstract: One-axle rotary shaping with the elastic medium (RSEM) is a kind of advanced sheet metal forming process. The research object is the springback of aluminous U-section. The orthogonal method is used to arrange the simulation experiments, the forming and springback of the workpiece are simulated successfully with the Finite Element Simulation software, and The main factors influenced the RSEM are analyzed. The simulation results are used as the training samples of the artificial neural network (ANN), and the ANN prediction model of RSEM process is set up. The prediction results would be tested with the experiment data, and only a little tolerance was existed between the two values. It demonstrated that the combination of orthogonal test, numerical simulation and neural network could effectively predict the springback of RSEM, the design efficiency of process parameters would be improved. It would guide the development of precision forming technology.
318
Abstract: This study is to investigate the effects of the process parameters on the heading load and metal flow pattern during heading and thread-rolling processes of LZ91 magnesium alloy screws. A heading process composed of two stages is proposed. The material flow pattern of the billet inside the die is analyzed using the finite element analyses. The effects of the upper die velocity, temperatures and friction factors on the heading loads and product quality are discussed. On the other hand, in the thread-rolling process, the effects of the friction factor on the effective stress, effective strain, and tooth height are investigated. Finally, heading and thread-rolling experiments are conducted using a self-designed die set and a lubricant of MoS2. The experimental values are compared with the simulation results to verify the validity of the finite element models and the proposed heading procedures.
322
Abstract: The magnesium alloys, that have high specific strength, are often applied to the industrial products. However, the magnesium alloys exhibit low ductility at the room temperature on account of its hexagonal close-packed structure. It is difficult to give large deformation to the magnesium alloys at room temperature. Therefore, the plastic forming of a magnesium alloy sheet needs the process at warm temperature. In the present work, the procedure of thermal-mechanical coupled analyses are employed. The numerical simulations of warm deep drawings have been performed in order to evaluate the dependence of the temperature on the plastic forming of a magnesium alloy AZ31 sheet. The mechanical properties of the magnesium alloy AZ31 shall be described as the functions depending on temperature. The shapes of punches and die holes are rectangle whose aspect ratios are 1.5 or 2.0. The corners of punches and dies are heated locally at 473K. The influence of local heating on the formability have been investigated. The relation between the blank size and the formability has been also estimated. As the results of numerical simulations, it was shown that the formability of deep drawing was improved by local heating to the punch and the die. When the blanks of various sizes were tried, the distributions of the plastic strain rate around the die corner were changed. Therefore, the deviation of the plastic flow and the temperature distribution arose in a sheet. Consequently, it is necessary to optimize the blank sizes according to the shape of die holes in addition to the forming temperature.
326
Abstract: The effect of interatomic potentials on the onset of plastic deformation in the nanometric machining of a crystalline diamond tool on a crystalline copper workpiece, was investigated by using the MD simulation. Three potential pairs were used for the copper-copper (workpiece) and the copper-carbon (tool-workpiece interface) atomic interactions. For case 1, the Morse potential was used for both the copper-copper and the copper-carbon interactions; for case 2, the Embedded Atom Method (EAM) potential was used for the copper-copper interactions and the Morse potential was used for the copper-carbon interactions; and for case 3, the EAM potential was used for the copper-copper interactions and the Lennard-Jones (LJ) potential was used for the copper-carbon interactions. The diamond tool was modelled as a deformable body and the Tersoff potential was applied for the carbon-carbon interactions. From the simulation results, pile-up volume and the force ratio appear to indicate the onset of plasticity during the machining. The pile-up volume shows that ploughing starts from 0.25nm, 0.20 and 0.30nm depth of cut for case 1, case 2 and case 3 respectively and the formation of chips starts to occur from the depth of cut of 1.5nm for case 3. The force ratio also indicate the onset of ploughing at different depths of cut from 0.10nm-0.3nm.
330
Abstract: The high tensile steel sheet attracts attention in recent years. Galling occurs easily in the press forming processes of the high tensile steel sheet because of the high contact pressure. However, the galling behavior can’t be predicted in the forming process yet. The object of this study is to clarify the galling mechanism and develop a prediction method of galling behavior in press forming. Experiments were carried out to investigate the galling behavior in the square cup drawing of a high tensile strength steel sheet. On the die surface, galling occurs at the bottom of the boundary between the straight and corner. On the drawn cup galling starts at the top of the same boundary. The variations of contact pressure, sliding distance and temperature were investigated by using FEM. It was found that galling occurs on the sheet surface position having the history of maximum temperature and at the moment just before sliding out from the die.
334
Abstract: The transient swelling process of polymeric gels is studied and a finite element model is introduced to simulate the phenomena based on existing hyperelastic theory for inhomogeneous swelling of gels and analogies made to transient heat conduction analysis. Examples of free swelling of a cube and a fixed cylinder were investigated, showing the highly non-linear deformation present during transition from the initial state to equilibrium.
338
Abstract: Ab initio electronic structure optimization and total energy calculations for fcc aluminum are used to study the equation of state (EOS).Through fitting to quasi-harmonic Debye model, the thermodynamics properties of different temperatures are calculated. The melting curve at different pressures is presented based on Lindemann measures. The results show that the calculated EOS and the revised melting curve both are in a good agreement with the shock compression and the diamond-anvil-cell (DAC) data. The results illustrate that we can use simple static calculation method which takes less time to gain reasonable melting results. It can be used in the qualitative forecast for materials with difficult experiments.
342
Abstract: Ion-beam-assisted deposition (IBAD) was investigated as a potential way to increase the fretting fatigue resistance of Ti-8Al-1Mo-1V alloy at elevated temperature. Three coating systems, hard TiN film with good toughness and soft Al film of low friction and Cu/Ni multilayer films with modulation period thickness of 20~600nm have been applied on the base material. Coefficients of friction and fretting fatigue lives of the specimens with and without film were compared. The film damage was characterized through scanning electron microscopy. The results indicate that the IBAD technique can prepare all films with high bonding strength and excellent lubricating properties. The fretting fatigue life of the Ti-8Al-1Mo-1V alloy with the TiN film was improved by a factor of 2.4 as compared to the uncoated substrate at elevated temperature because of the excellent wear and fatigue resistance and good toughness of the film. Excellent wear resistance and good anti-fatigue properties could be simultaneously obtained by a single hard film to control the fretting fatigue damage. The IBAD Al film significantly improved the fretting fatigue resistance of the Ti-8Al-1Mo-1V alloy at elevated temperature for good lubricating property. The fretting fatigue resistance of the Ti-8Al-1Mo-1V alloy was improved by all the Cu/Ni multilayer films. However, the fretting fatigue resistance did not increase monotonically with the modulation period of the films. Films with a modulation period of 200 nm had the highest fretting fatigue resistance among the multilayer films prepared owing to their high toughness and strength and good lubricating and anti-fatigue action. The fretting fatigue resistance of films with a modulation period of 20 nm was low because of the poor fracture toughness and crack propagation resistance, even though these films had the highest hardness and good fretting wear resistance. Thus, comprehensive properties, including high toughness and strength, must be considered for multilayer films used to improve the fretting fatigue resistance of titanium alloys.
346