[1]
A. Maldotti, A. Molinari, R. Amadelli, Photocatalysis with organized systems for the oxo- functionalization of hydrocarbons by O2, Chem.Rev.102(2002)3811-3836.
DOI: 10.1021/cr010364p
Google Scholar
[2]
M. Grätzel, Photoelectrochemical cells, Nature 414(2001)338-344.
Google Scholar
[3]
Y. Furubayashi, T. Hitosugi, T. Hasegawa, A transparent metal: Nb-doped anatase TiO2, Appl. Phys. Lett. 86 (2005) 252101-252103.
DOI: 10.1063/1.2208448
Google Scholar
[4]
K. Hara, K. Miyamoto, Y. Abe, Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes, J. Phys. Chem. B. 109 (2005) 23776-23778.
DOI: 10.1021/jp055572q
Google Scholar
[5]
D. Yoo, I. Kim, S. Kim, Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperature, Appl. Surf. Sci. 253 (2007) 3888-3892.
DOI: 10.1016/j.apsusc.2006.08.019
Google Scholar
[6]
H. Kikuchi, M. Kitano, M. Takeuchi, Extending the photoresponse of TiO2 to the visible light region: photoelectrochemical behavior of TiO2 thin films prepared by the radio frequency magnetron sputtering deposition method, J. Phys. Chem. B. 110 (11) (2006) 5537-5541
DOI: 10.1021/jp058262g.s001
Google Scholar
[7]
A.L. Linsebigler, G.Q. Lu, J. T. Yates, CO photooxidation on TiO2(110), J. Phys. Chem. 100(16) (1996) 6631-6636.
DOI: 10.1021/jp952018f
Google Scholar
[8]
C. Anderson, A.J. Bard, Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials, J. Phys. Chem. B. 101(14) (1997) 2611-2616.
Google Scholar
[9]
J. H. Kim, S. Lee, H.S. Im, The effect of target density and its morphology on TiO2 thin films grown on Si(100) by PLD, Appl. Surf. Sci. 151 (1999) 6-16.
DOI: 10.1016/s0169-4332(99)00269-x
Google Scholar
[10]
D. Luca, D. Macovei, C.M. Teodorescu, Characterization of titania thin films prepared by reactive pulsed-laser ablation, Surf. Sci. 600 (2006) 4342-4346.
DOI: 10.1016/j.susc.2006.01.162
Google Scholar
[11]
M. Gioti, D. Papadimitriou, S. Logothetidis, Diamond Relat. Mater. 9(2000) 741-744.
Google Scholar
[12]
M. Schubert, Generalized ellipsometry and complex optical systems, Thin Solid Films. 313-314 (1998) 323-332
DOI: 10.1016/s0040-6090(97)00841-9
Google Scholar
[13]
D. Wicaksana, A. Kobayashi, A. Kinbara, Process effects on structural properties of TiO2 thin films by reactive sputtering J. Vac. Sci. Technol. A. 10 (1992) 1479-1482.
DOI: 10.1116/1.578269
Google Scholar
[14]
G.E. Jellison, F.A. Modine, Parameterization of the optical functions of amorphous materials in the interband region, Appl. Phys. Lett. 69 (1996) 371-373.
DOI: 10.1063/1.118064
Google Scholar
[15]
G. E. Jellison, V. I. Merkulov, A. A. Puretzky, Characterization of thin-film amorphous semi-conductors using spectroscopic ellipsometry, Thin Solid Films. 377-378(2000) 68-73.
DOI: 10.1016/s0040-6090(00)01384-5
Google Scholar
[16]
J. A. Wollam Company, The user manual of variable angle spectroscopic ellipsometry, J. A. Wollam Company, Lincoln, Neb., 2000, pp.2-50
Google Scholar
[17]
Y. R. Park, K. J. Kim, Structural and optical properties of rutile and anatase TiO2 thin films: Effects of Co doping, Thin Solid Films. 484 (2005) 34-38.
DOI: 10.1016/j.tsf.2005.01.039
Google Scholar
[18]
M.C. Kao, H.Z. Chen, S.L. Young, The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells, Thin Solid Films. 517 (2009)5096-5099
DOI: 10.1016/j.tsf.2009.03.102
Google Scholar