Study on the Influence Factors of the Dispersion of Carbon Nanotubes in Aqueous Solution

Article Preview

Abstract:

In this paper, the optimal ratio of surfactant and carbon nanotubes (CNTs), the best ultrasonic time and the effects of three different surfactants were studied based on which the CNTs dispersion method was recommended. For each surfactant, optimal mix ratio of surfactant and CNTs could be found. The results of UV-Vis spectrophotometer test and centrifugation showed that the best CNTs dispersion could be obtained with OP, and the optimal mass ratio between OP and CNTs was about 0.7, and when the concentration of CNTs was 1g/L, the optimal ultrasonic time was about 1 hour. With the concentration of CNTs increased, the optimal ultrasonic time also increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

239-243

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S Iiiima: Nature. Vol. 354 [2] (1991), p.56.

Google Scholar

[2] Z. Liu, X.H. Chen and H.H. Song: New Chemical Materials.Vol. 30 [4] (2002), p.1.

Google Scholar

[3] A Thess, R Lee, P Nikolaev, et al.: Science. Vol. 273 [5274] (1996), p.483.

Google Scholar

[4] M Jose-Yacaman, M Miki-Yoshide, L Rendon, et al.: Appl. Phys. Lett. Vol. 62 [2] (1993), p.202.

Google Scholar

[5] Z.L. Yu, L. Chen, B. Zhang, et al.: Chinese Patent CN l696053 (2004).

Google Scholar

[6] N Pierard, A Fonseca, Z Konya, et al.: Chem PhyS Lett.Vol. 335 [1-2] (2001), p.1.

Google Scholar

[7] S. M. Uddin, T. Mahmud, C. Wolf, et al.: Compos Sci. Techn. Vol. 70 [16] (2010), p.2253.

Google Scholar

[8] S.M. Zhou, X.B. Zhang, Y.H. Mi, et al.: Chinese Patent CN 101049926 (2007).

Google Scholar

[9] H. G. Chae, Y. H. Choi, M. L. Minus, et al.: Compos Sci. Techn. Vol. 69 [10] (2009), p.406.

Google Scholar

[10] V. Raquel, SA. Cristina, C. G. Javier, et al.: Eur Polym J. Vol. 44 [6] (2008), p.2790.

Google Scholar

[11] S. Paul, Y. S. Kang, J .Yim, et al.: Current Applied Physics. Vol. 10 [4] (2010), p.101.

Google Scholar

[12] Y. Bai, D. Lin, F. Wu, et al.: Chemosphere. Vol. 79 [4] (2010), p.362.

Google Scholar

[13] B. Shi, X .Zhuang, X. Yan, et al.: Journal of Environmental Sciences. Vol. 22 [8] (2010), p.1195.

Google Scholar

[14] MMJ. Treaey, TW. Ebbesen, JM Gibson, et al.: APPI Phys Lett. Vol. 381(1996) , p.678.

Google Scholar

[15] L. P. Zhao, and L. Gao. Colloids Surfaces A. Vol. 224[1-31] (2003), p.127-l34.

Google Scholar

[16] R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, et al. Nan O Lett. Vol. 2(2002) p.25.

Google Scholar

[17] I. Madni, C. Hwang, S. Park, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 358[1-3] (2010) p.101.

Google Scholar

[18] J. Yu, N. Grossiord, C. E. Koning, et al. Carbon. Vol. 45 [3] (2007), p.618.

Google Scholar

[19] S. Paul, Y. S. Kang, J. Yim, et al. Current Applied Physics. Vol.10 [4] (2010), p.101.

Google Scholar