[1]
H. Reissner, Spannungen in Kugelschalen (Kuppeln), Müller-Breslau Festschrift, 1912, pp.181-193.
Google Scholar
[2]
E. Meissner, Das Elastizitätsproblem für dünne Schalen von Ringflächen-, Kugel- oder Kegelform, Physikalische Zeitschrift, 14, 1913, pp.343-349.
Google Scholar
[3]
H. Münz, Ein Integrationsverfahren für die Berechnung der Biegespannungen achsensymmetrischer Schalen unter Achsensymmetrischer Belastung, Ingenieur-Archiv, 19 (2, 4-5), pp.103-117, 255-270.
DOI: 10.1007/bf00538041
Google Scholar
[4]
Lurie A. I., Statics of Thin-walled Elastic Shells. State Publishing House of Technical and Theoretical Literature, Moscow, 1947; translation, AEC-tr-3798, Atomic Energy Commission, (1959).
Google Scholar
[5]
W. Flügge, Shells. Statics, Arkady, Warszawa (1972).
Google Scholar
[6]
W. Z. Wlasov, Obszczaja tieoria oboloczek, Gostiechiizdat, Moskva (1949).
Google Scholar
[7]
R. Nagorski, Bending of a spherical shell under its own weight, Engineering Transactions, 25 (3), 1977, pp.513-522.
Google Scholar
[8]
M. Łubiński, W. Żółtowski, W. Włodarczyk, Konstrukcje metalowe. Cz. 2, Arkady, Warszawa (2008).
Google Scholar
[9]
W. T. Koiter, A spherical shell under point loads at its poles, Progress in Appl. Mech. (The Prager Anniversary Volume). The Macmillan Co., New York, 1963, pp.155-169.
Google Scholar
[10]
H. Reismann, G. A. Thurston, A. A. Holston, The Shallow Spherical Shell Subjected to Point Load or Hot Spot, ZAMM Volume 45, Issue 2-3, 1965, p.95–103.
DOI: 10.1002/zamm.19650450204
Google Scholar
[11]
S. Łukasiewicz, Concentrated loadings on plates, disks and shells (in Polish), PWN, Warszawa (1976).
Google Scholar
[12]
P. Seide, Small elastic deformations of thin shells, Noordhoff Int. Publ. Leyden, (1975).
Google Scholar
[13]
P. Ladevèze (Ed. ), Local effects in the analysis of structures, Elsevier Publishing Company, (1985).
Google Scholar
[14]
Y. Rossikhin, M. Shitikova, Dynamic response of a spherical shell impacted by an elastic rod with a rounded end. Proc. of Int. Conf. on Engineering Mechanics, Structures, Engineering Geology, Int. Conf. on Geography and Geology, 2010, pp.453-458.
Google Scholar
[15]
C. N. DeSilva, P. J. TSAI, On the contact problem of thin elastic shells. Z. Angew. Math. Mech., 49 (5) 1969, pp.267-273.
DOI: 10.1002/zamm.19690490503
Google Scholar
[16]
H. Kitagawa, S. Hiura, Elastic-plastic Unstable Deformation of Shells in Contact (Case of a Spherical Shell), JSME Int. Journal, Series 1, Vol. 32, № 2, 1989, pp.199-207.
DOI: 10.1299/jsmea1988.32.2_199
Google Scholar
[17]
E. Yu. Mikhailova, G. V. Fedotenkov, Nonstationary axisymmetric problem of the impact of a spherical shell on an elastic half-space (initial stage of interaction). Mechanics of Solids, 2011, Vol. 46, № 2, p.239–247, 2011, Allerton Press, Inc.
DOI: 10.3103/s0025654411020129
Google Scholar
[18]
S. MansoorBaghaei, A. M. Sadegh, Elastic spherical shell impacted with an elastic barrier: A closed form solution, International Journal of Solids and Structures, 48 (2011), p.3257–3266.
DOI: 10.1016/j.ijsolstr.2011.07.016
Google Scholar
[19]
E. T. Whittaker, G. N. Watson, A course of modern analysis, PWN Warszawa, (1968).
Google Scholar
[20]
K. Kowalczyk, H. Sanecki, Stress and strain analysis in balls of ball-ring coal-dust mills with respect of some operational factors (in Polish), Zeszyty Naukowe Politechniki Rzeszowskiej, 79, Mechanika z. 27, 1991, pp.151-152.
Google Scholar
[21]
K. Kowalczyk, H. Sanecki, Maggi's equations of motion for a nonholonomic ball-ring coal-dust structure, ZAMM, 72, 4, 1992, pp.175-178.
Google Scholar