Certain Solution of Contact Problem for Spherical Shell

Article Preview

Abstract:

A formulation of a contact problem for a spherical shell is presented in the paper. It uses a certain analytical-numerical solution for the analysis of an elastic complete sphere subjected to a concentrated force and associated body forces. Assumptions and equations of thin shell theory of small deformations and displacements are applied to the problem. Good numerical efficiency is achieved due to a solving function Z introduced in a complex form while the concentrated force was distributed over a small finite area. Some examples are presented to illustrate the solution and an influence of the size of assumed area of load distribution. An application of the solution to the formulation of the contact problem of the spherical shell resting on several separate supports is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-191

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Reissner, Spannungen in Kugelschalen (Kuppeln), Müller-Breslau Festschrift, 1912, pp.181-193.

Google Scholar

[2] E. Meissner, Das Elastizitätsproblem für dünne Schalen von Ringflächen-, Kugel- oder Kegelform, Physikalische Zeitschrift, 14, 1913, pp.343-349.

Google Scholar

[3] H. Münz, Ein Integrationsverfahren für die Berechnung der Biegespannungen achsensymmetrischer Schalen unter Achsensymmetrischer Belastung, Ingenieur-Archiv, 19 (2, 4-5), pp.103-117, 255-270.

DOI: 10.1007/bf00538041

Google Scholar

[4] Lurie A. I., Statics of Thin-walled Elastic Shells. State Publishing House of Technical and Theoretical Literature, Moscow, 1947; translation, AEC-tr-3798, Atomic Energy Commission, (1959).

Google Scholar

[5] W. Flügge, Shells. Statics, Arkady, Warszawa (1972).

Google Scholar

[6] W. Z. Wlasov, Obszczaja tieoria oboloczek, Gostiechiizdat, Moskva (1949).

Google Scholar

[7] R. Nagorski, Bending of a spherical shell under its own weight, Engineering Transactions, 25 (3), 1977, pp.513-522.

Google Scholar

[8] M. Łubiński, W. Żółtowski, W. Włodarczyk, Konstrukcje metalowe. Cz. 2, Arkady, Warszawa (2008).

Google Scholar

[9] W. T. Koiter, A spherical shell under point loads at its poles, Progress in Appl. Mech. (The Prager Anniversary Volume). The Macmillan Co., New York, 1963, pp.155-169.

Google Scholar

[10] H. Reismann, G. A. Thurston, A. A. Holston, The Shallow Spherical Shell Subjected to Point Load or Hot Spot, ZAMM Volume 45, Issue 2-3, 1965, p.95–103.

DOI: 10.1002/zamm.19650450204

Google Scholar

[11] S. Łukasiewicz, Concentrated loadings on plates, disks and shells (in Polish), PWN, Warszawa (1976).

Google Scholar

[12] P. Seide, Small elastic deformations of thin shells, Noordhoff Int. Publ. Leyden, (1975).

Google Scholar

[13] P. Ladevèze (Ed. ), Local effects in the analysis of structures, Elsevier Publishing Company, (1985).

Google Scholar

[14] Y. Rossikhin, M. Shitikova, Dynamic response of a spherical shell impacted by an elastic rod with a rounded end. Proc. of Int. Conf. on Engineering Mechanics, Structures, Engineering Geology, Int. Conf. on Geography and Geology, 2010, pp.453-458.

Google Scholar

[15] C. N. DeSilva, P. J. TSAI, On the contact problem of thin elastic shells. Z. Angew. Math. Mech., 49 (5) 1969, pp.267-273.

DOI: 10.1002/zamm.19690490503

Google Scholar

[16] H. Kitagawa, S. Hiura, Elastic-plastic Unstable Deformation of Shells in Contact (Case of a Spherical Shell), JSME Int. Journal, Series 1, Vol. 32, № 2, 1989, pp.199-207.

DOI: 10.1299/jsmea1988.32.2_199

Google Scholar

[17] E. Yu. Mikhailova, G. V. Fedotenkov, Nonstationary axisymmetric problem of the impact of a spherical shell on an elastic half-space (initial stage of interaction). Mechanics of Solids, 2011, Vol. 46, № 2, p.239–247, 2011, Allerton Press, Inc.

DOI: 10.3103/s0025654411020129

Google Scholar

[18] S. MansoorBaghaei, A. M. Sadegh, Elastic spherical shell impacted with an elastic barrier: A closed form solution, International Journal of Solids and Structures, 48 (2011), p.3257–3266.

DOI: 10.1016/j.ijsolstr.2011.07.016

Google Scholar

[19] E. T. Whittaker, G. N. Watson, A course of modern analysis, PWN Warszawa, (1968).

Google Scholar

[20] K. Kowalczyk, H. Sanecki, Stress and strain analysis in balls of ball-ring coal-dust mills with respect of some operational factors (in Polish), Zeszyty Naukowe Politechniki Rzeszowskiej, 79, Mechanika z. 27, 1991, pp.151-152.

Google Scholar

[21] K. Kowalczyk, H. Sanecki, Maggi's equations of motion for a nonholonomic ball-ring coal-dust structure, ZAMM, 72, 4, 1992, pp.175-178.

Google Scholar