Damage Detection, Localization and Assessment in Multilayered Composite Structure with Delaminations

Article Preview

Abstract:

In this paper the dynamic behavior of composite multilayered cylindrical panel with a single, square, interlaminar delamination is considered with using finite element method. Based on numerical results it is possible to determine the effect of the delamination on the guided wave propagation in curved structures. The results are used to quantify the difference of response signal in the case of perfect and defected structures. The results indicates that the size and orientations of the defect have a significant influence on overall dynamic behavior and they should be taken into account to design appropriate and effective non-destructive damage test methods and algorithms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-204

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hoła J., Schabowicz K., State-of-the-art non-destructive methods for diagnostic testing of building structures – anticipated development trends, Archives of Civil and Mechanical Engineering 10(3), 2010, pp.5-18.

DOI: 10.1016/s1644-9665(12)60133-2

Google Scholar

[2] Raišutis R., Jasiūnienė E., Šliteris R., Vladišauskas A., The review of non-destructive testing techniques suitable for inspection of the wind turbine blades, Ultrasound Journal Vol. 63, № 1, 2008, pp.26-30.

Google Scholar

[3] Rao D., Pawar M.R., Review of nondestructive evaluation techniques for FRP composite structural components, Civil Engineering, (2007).

Google Scholar

[4] Hellier C., Handbook of Nondestructive Evaluation, McGraw-Hill, New-York, (2001).

Google Scholar

[5] Kuhn E., Emmanuel Valo E., Herve P., A comparison between thermosonics and thermography for delamination detection in polymer matrix laminates, Composite Structures 94 (2012) 1155–1164.

DOI: 10.1016/j.compstruct.2011.10.008

Google Scholar

[6] Kromine A.K., Fomitchov P.A., Krishnaswamy S., Achenbach J.D., Laser ultrasonic detection of surface breaking discontinuities: scanning laser source technique. Mater Eval 2000; 58(2): 173–7.

DOI: 10.1117/12.397958

Google Scholar

[7] Joubert P.Y., Le Diraison Y., Pinassaud J., A linear magneto-optical imager for non-destructive evaluation. Int J Appl Electrom Mech 2007; 25(1–4): 297–305.

DOI: 10.3233/jae-2007-831

Google Scholar

[8] Gilles-Pascaud C., Decitre J.M., Systčme CF multi-éléments pour le contrôle de petits défauts débouchants (eddy current array probe for the control of small surface-breaking flaws). In: Proceedings of the Les Journées COFREND, Paris, France; May (2005).

Google Scholar

[9] Favro L.D., Han X., Ouyang Z., Sun G., Thomas R.L., Sonic IR imaging of cracks and delamination. Anal Sci 2001; 17: 451–3.

Google Scholar

[10] Sohn H., Farrar C.R., Hemez F.M., Shunk D.D., Stinemates D.W., Nadler B.R., Czarnecki J.J., A Review of Structural Health Monitoring Literature: 1996-2001, Los Alamos National Laboratory Report, LA-13976-MS, (2004).

Google Scholar

[11] Herszberg I., Bannister M.K., Verijenko V., Li H.C.H., Buderath M., Integration of Structural Health Monitoring for Composite Structures into the aircraft healt management and maintenace systems, Proc. ICCM17, Edinburgh, (2009).

Google Scholar

[12] Paget C.A., Atherton K.J., Damage Assessment in a Full-Scale Aircraft Wing by Modified Acoustic Emission. Proc. 2nd European Workshop on Structural Health Monitoring , Munich, 2004, 382-7.

Google Scholar

[13] Drouillard T.F., A history of acoustic emission. J Acoust Emiss 1996; 14: 1–34.

Google Scholar

[14] Miller R.K., Hill EVK. In: Acoustic emission testing, nondestructive testing handbook, third ed. Moore PO, editor. ASNT, vol. 6. Columbus OH, USA; (2005).

Google Scholar

[15] Kinsler L.E., Frey A.R., Coppens A.B., Sanders J.V., Fundamentals of acoustics. New York: J. Wiley and Sons Publ; (2000).

Google Scholar

[16] Caprino G., Teti R., De Iorio I., Predicting residual strength of pre-fatigued glass fibre-reinforced plastic laminates through acoustic emission monitoring. Compos Part B-Eng 2005; 36(5): 365–71.

DOI: 10.1016/j.compositesb.2005.02.001

Google Scholar

[17] Su Z., Ye L., Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm. Composite Structures, 66: 627-637, (2004).

DOI: 10.1016/j.compstruct.2004.05.011

Google Scholar

[18] Seth S.K., Spearing S.M., Constantinos S., Damage detection in composite materials using Lamb wave methods. Smart Materials and Structures, 11(2): 269-278, (2002).

DOI: 10.1088/0964-1726/11/2/310

Google Scholar

[19] Philippidis T.P., Assimakopoulou T. T, Using acoustic emission to assess shear strength degradation in FRP composites due to constant and variable amplitude fatigue loading. Compos Sci Technol 2008; 68(3–4): 840–7.

DOI: 10.1016/j.compscitech.2007.08.012

Google Scholar

[20] Leone C., Lopresto V., Papa L., Caprino G., Triangulation method as a valid tool to locate the damage in unidirectional CFRP laminates, Composite Structures 94(8) (2012), 2418-2423.

DOI: 10.1016/j.compstruct.2012.03.022

Google Scholar

[21] Su Z., Ye L., Lu Y., Guided Lamb waves for identification of damage in composite structures: A review, Journal of Sound and Vibration 295, 2006, pp.753-780.

DOI: 10.1016/j.jsv.2006.01.020

Google Scholar

[22] Gopalakrishnan S., Ruzzene M., Hanagud S., Computational Techniques for Structural Health Monitoring, Springer, London, (2011).

DOI: 10.1007/978-0-85729-284-1

Google Scholar

[23] Jeong H., Jang Y-S., Wavelet analysis of plate wave propagation in composite laminates. Compos Struct 2000; 49: 443–50.

DOI: 10.1016/s0263-8223(00)00079-9

Google Scholar

[24] Wang L., Yuan F.G., Group velocity and characteristic wave curves of Lamb waves in composites: modelling and experiments. Comp Sci Technol 2007; 67: 1370–84.

DOI: 10.1016/j.compscitech.2006.09.023

Google Scholar

[25] K Krishnamurthy.S., Mahajan P., Mittal R.K., Impact response and damage in laminated composite cylindrical shells. Compos Struct 2003; 59: 15–36.

DOI: 10.1016/s0263-8223(02)00238-6

Google Scholar

[26] Muc A., Stawiarski A., Modeling damage in cylindrical shells using elastic wave-based techniques, Proceeding ICCM18 (International Conference on Composite Materials), (2011).

Google Scholar

[27] Worden K., Farrar C.R., Manson G., Park G., A fundamental axioms of structural health monitoring, Proc. R. Soc. A 463, 2007, pp.1639-1664.

DOI: 10.1098/rspa.2007.1834

Google Scholar

[28] Ye L., Su Z., Identification of damage using Lamb waves, Springer, (2009).

Google Scholar