[1]
Hoła J., Schabowicz K., State-of-the-art non-destructive methods for diagnostic testing of building structures – anticipated development trends, Archives of Civil and Mechanical Engineering 10(3), 2010, pp.5-18.
DOI: 10.1016/s1644-9665(12)60133-2
Google Scholar
[2]
Raišutis R., Jasiūnienė E., Šliteris R., Vladišauskas A., The review of non-destructive testing techniques suitable for inspection of the wind turbine blades, Ultrasound Journal Vol. 63, № 1, 2008, pp.26-30.
Google Scholar
[3]
Rao D., Pawar M.R., Review of nondestructive evaluation techniques for FRP composite structural components, Civil Engineering, (2007).
Google Scholar
[4]
Hellier C., Handbook of Nondestructive Evaluation, McGraw-Hill, New-York, (2001).
Google Scholar
[5]
Kuhn E., Emmanuel Valo E., Herve P., A comparison between thermosonics and thermography for delamination detection in polymer matrix laminates, Composite Structures 94 (2012) 1155–1164.
DOI: 10.1016/j.compstruct.2011.10.008
Google Scholar
[6]
Kromine A.K., Fomitchov P.A., Krishnaswamy S., Achenbach J.D., Laser ultrasonic detection of surface breaking discontinuities: scanning laser source technique. Mater Eval 2000; 58(2): 173–7.
DOI: 10.1117/12.397958
Google Scholar
[7]
Joubert P.Y., Le Diraison Y., Pinassaud J., A linear magneto-optical imager for non-destructive evaluation. Int J Appl Electrom Mech 2007; 25(1–4): 297–305.
DOI: 10.3233/jae-2007-831
Google Scholar
[8]
Gilles-Pascaud C., Decitre J.M., Systčme CF multi-éléments pour le contrôle de petits défauts débouchants (eddy current array probe for the control of small surface-breaking flaws). In: Proceedings of the Les Journées COFREND, Paris, France; May (2005).
Google Scholar
[9]
Favro L.D., Han X., Ouyang Z., Sun G., Thomas R.L., Sonic IR imaging of cracks and delamination. Anal Sci 2001; 17: 451–3.
Google Scholar
[10]
Sohn H., Farrar C.R., Hemez F.M., Shunk D.D., Stinemates D.W., Nadler B.R., Czarnecki J.J., A Review of Structural Health Monitoring Literature: 1996-2001, Los Alamos National Laboratory Report, LA-13976-MS, (2004).
Google Scholar
[11]
Herszberg I., Bannister M.K., Verijenko V., Li H.C.H., Buderath M., Integration of Structural Health Monitoring for Composite Structures into the aircraft healt management and maintenace systems, Proc. ICCM17, Edinburgh, (2009).
Google Scholar
[12]
Paget C.A., Atherton K.J., Damage Assessment in a Full-Scale Aircraft Wing by Modified Acoustic Emission. Proc. 2nd European Workshop on Structural Health Monitoring , Munich, 2004, 382-7.
Google Scholar
[13]
Drouillard T.F., A history of acoustic emission. J Acoust Emiss 1996; 14: 1–34.
Google Scholar
[14]
Miller R.K., Hill EVK. In: Acoustic emission testing, nondestructive testing handbook, third ed. Moore PO, editor. ASNT, vol. 6. Columbus OH, USA; (2005).
Google Scholar
[15]
Kinsler L.E., Frey A.R., Coppens A.B., Sanders J.V., Fundamentals of acoustics. New York: J. Wiley and Sons Publ; (2000).
Google Scholar
[16]
Caprino G., Teti R., De Iorio I., Predicting residual strength of pre-fatigued glass fibre-reinforced plastic laminates through acoustic emission monitoring. Compos Part B-Eng 2005; 36(5): 365–71.
DOI: 10.1016/j.compositesb.2005.02.001
Google Scholar
[17]
Su Z., Ye L., Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm. Composite Structures, 66: 627-637, (2004).
DOI: 10.1016/j.compstruct.2004.05.011
Google Scholar
[18]
Seth S.K., Spearing S.M., Constantinos S., Damage detection in composite materials using Lamb wave methods. Smart Materials and Structures, 11(2): 269-278, (2002).
DOI: 10.1088/0964-1726/11/2/310
Google Scholar
[19]
Philippidis T.P., Assimakopoulou T. T, Using acoustic emission to assess shear strength degradation in FRP composites due to constant and variable amplitude fatigue loading. Compos Sci Technol 2008; 68(3–4): 840–7.
DOI: 10.1016/j.compscitech.2007.08.012
Google Scholar
[20]
Leone C., Lopresto V., Papa L., Caprino G., Triangulation method as a valid tool to locate the damage in unidirectional CFRP laminates, Composite Structures 94(8) (2012), 2418-2423.
DOI: 10.1016/j.compstruct.2012.03.022
Google Scholar
[21]
Su Z., Ye L., Lu Y., Guided Lamb waves for identification of damage in composite structures: A review, Journal of Sound and Vibration 295, 2006, pp.753-780.
DOI: 10.1016/j.jsv.2006.01.020
Google Scholar
[22]
Gopalakrishnan S., Ruzzene M., Hanagud S., Computational Techniques for Structural Health Monitoring, Springer, London, (2011).
DOI: 10.1007/978-0-85729-284-1
Google Scholar
[23]
Jeong H., Jang Y-S., Wavelet analysis of plate wave propagation in composite laminates. Compos Struct 2000; 49: 443–50.
DOI: 10.1016/s0263-8223(00)00079-9
Google Scholar
[24]
Wang L., Yuan F.G., Group velocity and characteristic wave curves of Lamb waves in composites: modelling and experiments. Comp Sci Technol 2007; 67: 1370–84.
DOI: 10.1016/j.compscitech.2006.09.023
Google Scholar
[25]
K Krishnamurthy.S., Mahajan P., Mittal R.K., Impact response and damage in laminated composite cylindrical shells. Compos Struct 2003; 59: 15–36.
DOI: 10.1016/s0263-8223(02)00238-6
Google Scholar
[26]
Muc A., Stawiarski A., Modeling damage in cylindrical shells using elastic wave-based techniques, Proceeding ICCM18 (International Conference on Composite Materials), (2011).
Google Scholar
[27]
Worden K., Farrar C.R., Manson G., Park G., A fundamental axioms of structural health monitoring, Proc. R. Soc. A 463, 2007, pp.1639-1664.
DOI: 10.1098/rspa.2007.1834
Google Scholar
[28]
Ye L., Su Z., Identification of damage using Lamb waves, Springer, (2009).
Google Scholar