Synthesis of Dispersed Y2O3 Nanopowder from Yttrium Stearate

Article Preview

Abstract:

Fine yttrium stearate powder was produced at a relatively low temperature using yttrium nitrate hexahydrate, ammonia and stearic acid as the raw materials. Dispersed Y2O3 nanopowder was synthesized by calcining the yttrium stearate. The formation mechanism of the precursor and the Y2O3 nanopowder was studied by means of XRD, TG-DTA, FT-IR, BET, FE-SEM and HR-TEM. Pure and dispersed Y2O3 nanopowder with an average particle size of 30 nm was produced by calcining the precursor at 600 °C. The particle size increases to about 60 nm with the increase of the calcination temperature to 1000 °C. In the preparation of Y2O3 from yttrium stearate, no water medium is involved, thus capillarity force and bridging of adjacent particles by hydrogen bonds can be avoided, resulting in good dispersion of the particles. The dispersed Y2O3 nanopowder prepared in this work has potential application in phosphors and transparent ceramic materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Riede, J. Helmstedt, V. Riede, J. Zemek, J. Stejskal, Preparation and characterization of exfoliated polyaniline. Langmuir. 16 (2000) 6240.

DOI: 10.1021/la991414c

Google Scholar

[2] J.W. Kim, F. Liu, H.J. Choi, S.H. Hong, Intercalated polypyrrole/Na+-montmorillonite nanocomposite via an inverted emulsion pathway method. J. Joo, Polymer. 44 (2003) 289.

DOI: 10.1016/s0032-3861(02)00749-8

Google Scholar

[3] K.G. Cho, D. Kumar, P.H. Holloway, R. Singh, Luminescence behavior of pulsed laser deposited Eu:Y2O3 thin film phosphors on sapphire substrates. Appl. Phys. Lett. 73 (1998) 3058.

DOI: 10.1063/1.122671

Google Scholar

[4] Vetrone F, Boyer J C, Capobianco J A. Effect of Yb3+ co-doping on the upconversion emission in nanocrystalline Y2O3: Er3+. J. Phys. Chem. 107 (2003) 1107.

Google Scholar

[5] R. Bazzi, M.A. Flores-Gonzales, C. Louis, et al., Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles. J. Lumin. 445 (2003) 102-103.

DOI: 10.1016/s0022-2313(02)00588-4

Google Scholar

[6] P. Maestro, D. Huguenin, A. Seigneurin, et al., Mixed rare earth oxides as starting material for the preparation of Y2O3:Eu lamp phosphor: characterization and use. J. Electrochem. Soc. 139 (1992) 1479.

DOI: 10.1149/1.2069435

Google Scholar

[7] K.Y. Jung, C.H. Lee, Y.C. Kang, Effect of surface area and crystallite size on luminescent intensity of Y2O3: Eu phosphor prepared by spray pyrolysis. Mater. Lett. 59 (2005) 2451-2456.

DOI: 10.1016/j.matlet.2005.03.017

Google Scholar

[8] G.Y. Hong, K. Yoo, S.J. Moon, Enhancement of luminous intensity of spherical Y2O3: Eu phosphors using flux during aerosol pyrolysis. J. Electro chem. Soc. 150 (2003) 67-71.

DOI: 10.1149/1.1556054

Google Scholar

[9] J. McKittrick, L.E. Shea, C.F. Bacalski, E.J. Bosze, The influence of processing parameters on luminescent oxides produced by combusion synthesis. Dysplays. 19 (1999) 169-172.

DOI: 10.1016/s0141-9382(98)00046-8

Google Scholar

[10] P. Duran, J. Tartaj, C. Moure, Sintering behaviour of Y2O3 powders prepared by the polymer complex solution method. Ceram. Int. 28 (2002) 791-803.

DOI: 10.1016/s0272-8842(02)00045-7

Google Scholar

[11] R. Ravi, Growth and characterization of Y2O3:Eu3+ phosphor films by sol-gel process. Solid State Commun. 99 (1996) 439-443.

DOI: 10.1016/0038-1098(96)00249-9

Google Scholar

[12] Capobianco J A, Boyer J C, Vetrone F, Speghini A, Bettinelli M. Optical spectroscopy and upconversion studies of Ho3+- doped bulk and nanocrystalline Y2O3. Chem. Mater. 14 (2002) 2915.

DOI: 10.1021/cm011584m

Google Scholar

[13] Y.Q. Zhai, Z.H. Yao, S.W. Ding. Synthesis and charactcriration of Y2O3: Eu nanopowder via EDTA complexing sol-gcl process [J]. Materials Letters. 57 (2003) 2901-2906.

DOI: 10.1016/s0167-577x(02)01394-0

Google Scholar

[14] M.I. Martinez rubio, T.G. Ireland, J. Silver, Effect of EDTA on controlling nucleation and morphology in the synthesis of ultrafine Y2O3:Eu phosphors. Electrochem. Solid-State Lett. 3 (2000) 446-449.

DOI: 10.1149/1.1391175

Google Scholar

[15] J.Wan, Z.Wang, X. Chen, L. Mu, Y. Qu, Shape-tailored photoluminescent intensity of red phosphor Y2O3:Eu3+. J. Cryst. Growth. 284 (2005) 538-543.

DOI: 10.1016/j.jcrysgro.2005.07.040

Google Scholar

[16] M.R. Davolos, S. Feliciano, A.m. Pirez, R.F.C. Marquez, Solvothermal method to obtain europium-doped yttrium oxide. J. Solid State Chem. 171 (2003) 268-272.

DOI: 10.1016/s0022-4596(02)00174-3

Google Scholar

[17] K. Nakamoto, Infrared spectra of inorganic & coordination compounds. John Wiley & Sons, New York, 1963.

Google Scholar

[18] J. A. Gadsden, Infrared spectra of minerals and related inorganic compounds. Butterworth, Newton, MA, 1975.

Google Scholar

[19] J.-G. Li, T. Ikegami, J. H. Lee, and T. Mori, "Well-sinterable Y3Al5O12 powder from carbonate precursor," J. Mater. Res. 15 (2000) 1514-23.

DOI: 10.1557/jmr.2000.0217

Google Scholar

[20] J.-G. Li, T. Ikegami, J. H. Lee, et al., "Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant," J. Eur. Ceram. Soc. 20 (2000) 2395-405.

DOI: 10.1016/s0955-2219(00)00116-3

Google Scholar

[21] Xu, G. G., Zhang, X. D., He, W., Liu, H. and Li, H., The study of surfactant application on synthesis of YAG nano-sized powders. Powder Technol. 163 (2006) 202-205.

DOI: 10.1016/j.powtec.2006.02.004

Google Scholar

[22] Kaliszewski, M. S. and Heuer, A. H., Alcohol interaction with zirconia powders. J. Am. Ceram. Soc. 73 (1990) 1504-1509.

DOI: 10.1111/j.1151-2916.1990.tb09787.x

Google Scholar