Thermal Fatigue of Ceramics: Theory, Life Predication and Characterization Methods

Article Preview

Abstract:

Thermal fatigue is a common problem when ceramics are used at high temperature. Typically, the mechanic properties of ceramics decrease after either long service times at high temperatures or cycles of temperature changes. The thermal fatigue process, the factors influencing the thermal fatigue and the prediction of the thermal fatigue life of ceramics are concerned topics. The thermal fatigue of ceramics is mainly explained by the critical stress fracture and thermal shock damage theories. The thermal fatigue tests include the traditional strength method, the quench-indentation method and the non-destructive detection such as the acoustic emission technique. Based on the thermal fatigue theories, the thermal fatigue life can be predicted using built models. The establishment of the standards for the testing of ceramic thermal fatigue will enhance the comparability of experimental data and further promote the development of analysis theory of thermal fatigue, benefiting the design of engineering ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

455-459

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Qiu, R. Shen, X. Fu, D. Yan, Mechanical Property Loss of Hot-Pressed Si3N4 under Thermal Fatigue Conditions, J. Inorg. Mater. 6 (1991) 53-59 (in chinese).

Google Scholar

[2] F. F. Lange, High-Temperature Strength Behavior of Hot-Pressed Si3N4: Evidence for subcritical Crack Growth, J. Am. Ceram. Soc. 57 (1974) 84-87.

DOI: 10.1111/j.1151-2916.1974.tb10819.x

Google Scholar

[3] S. Shong, X. Ai, C. Huang, Study Development for Thermal Shock Resistance and Its Mechanisms of Ceramics, J. Ceram. 23 (2002) 233-237 (in Chinese).

Google Scholar

[4] W. D. Kingery, Metal-ceramic interaction: Ⅳ, absolute measurement of metal-ceramic interfacial energy and interfacial adsorption of silicon from iron-silicon alloys, J. Am. Ceram. Soc. 37 (1954) 42-25.

DOI: 10.1111/j.1151-2916.1954.tb14002.x

Google Scholar

[5] W. D. Kingery, Factors affecting thermal stress resistance of ceramic materials, J. Am. Ceram. Soc. 38 (1955) 3-15.

Google Scholar

[6] D. P. H. Hasselman, Griffith Criterion and Thermal Shock Resistance of Single-Phase Versus Multiphase Brittle Ceramics, J. Am. Ceram. Soc. 52 (1969) 288-289.

DOI: 10.1111/j.1151-2916.1969.tb09188.x

Google Scholar

[7] D. P. H. Hasselman, Approximate Theory of Thermal Stress Resistance of Brittle Ceramics Involving Creep, J. Am. Ceram. Soc. 50 (1967) 454-457.

DOI: 10.1111/j.1151-2916.1967.tb15160.x

Google Scholar

[8] Y. Bao, Failure Behaviors and Lifetime Prediction of Al2O3, SiC and HP-Si3N4, J. China Ceram. Soc. 29 (2001) 21-25 (in Chinese).

Google Scholar

[9] J. P. Singh, K. Niihara, D. P. H. Hasselman, Analysis of thermal fatigue behavior of brittle structural materials, J. Mater. Sci. 16 (1981) 2789-2797.

DOI: 10.1007/bf02402843

Google Scholar

[10] N. Kamiya, O. Kamigato, Prediction of thermal fatigue life of ceramics, J. Mater. Sci. 14 (1979) 573-582.

Google Scholar

[11] N. Kamiya, O. Kamigaito, Thermal fatigue life of ceramics under mechanical load, J. Mater. Sci. 17 (1982) 3149-3157.

DOI: 10.1007/bf01203477

Google Scholar

[12] X. Ling, J. Shen, H. Lian, H. Sun, Testing Method Study on High Temperature Fatigue of Fine Ceramics, Phys. Testing Chem. Anal. Part A (Physical Testing). 23 (1996) 21-25 (in Chinese).

Google Scholar

[13] J. Lv, Z. Zheng, Z. Jin, H. Ding, Indentation-Quench Method to Determine the Thermal Shock Resistance for Toughing Al2O3 Ceramic Matrix Composites, Phys. Testing Chem. Anal. Part A (Physical Testing). 39 (2003) 4-18 (in Chinese).

Google Scholar

[14] S. Maensiri, S. G. Roberts, Thermal Shock Resistance of Sintered Alumina/Silicon Carbide Nanocomposites Evaluated by Indentation Techniques, J. Am. Ceram. Soc. 85 (2002) 1971-(1978).

DOI: 10.1111/j.1151-2916.2002.tb00390.x

Google Scholar

[15] J. Qiu, R. Shen, X. Fu, Thermal Fatigue Behavior of Silicon Nitride Ceramics, J. China Ceram. Soc. 21 (1993) 188-192 (in Chinese).

Google Scholar

[16] R. Geng, G. Shen, S. Liu, An Overview on the Development of Acoustic Emission Signal Processing and Analysis Technique, Nondestructive Testing. 24 (2002) 23-28 (in Chinese).

Google Scholar

[17] M. Guo, J. Zhao, Monitoring Thermal-Shock Damage in Ceramic Materials by Means of Acoustic Emission, China Ceram. 37 (2001) 34-36 (in Chinese).

Google Scholar

[18] S. Yan, M. Liu, Acoustic Emission Technique and Application, J. Xi'an Aerotech. College. 20 (2002) 64 (in Chinese).

Google Scholar

[19] S. Momon, M. Moevus, N. Godin, M. R'Mili, P. Reynaud, G. Fantozzi, G. Fayolle, Acoustic emission and lifetime prediction during static fatigue tests on ceramic-matrix-composite at high temperature under air, Composites: Part A. 41 (2010) 913-918.

DOI: 10.1016/j.compositesa.2010.03.008

Google Scholar

[20] T. Li, H. Du, S. Tang, J. Chen, Acoustic Emission Research in Ceramic Material Fracture Process, China Ceram. 81 (1985) 1-5 (in Chinese).

Google Scholar

[21] P. K. Panda, T. S. Kannan, J. Dubois, C. Olagnon, G. Fantozzi, Thermal shock and thermal fatigue study of alumina, J. Eur. Ceram. Soc. 22 (2002) 2187-2196.

DOI: 10.1016/s0955-2219(02)00022-5

Google Scholar