Ni0.75Co0.25/(Gd2O3–CeO2) Anodes for Solid Oxide Fuel Cells

Article Preview

Abstract:

Electrochemical performance of solid oxide fuel cells based on Ni0.75Co0.25-GDC (Gd0.1Ce0.9O1.95) and Ni-GDC anodes were investigated and compared in order to understand the effects of (i) alloying Ni with Co and (ii) anode microstructure on the cell performance under hydrogen fuel. At the sintering temperature of 1300°C for 5 h, the Ni0.75Co0.25-GDC anode showed a superior distribution and connection of grains to the Ni-GDC anode which had grain clustering structure in general. Grain growth and connection were found in both anodes when the sintering temperature was increased to 1350°C for 3 h. This resulted in significant improvement of the anodic polarization resistance for the Ni-GDC anode but only minor change for the Ni0.75Co0.25-GDC anode. This research, however, showed that the Ni-GDC anode had higher anodic polarization resistance than the Ni0.75Co0.25-GDC anode, resulting in the better cell power density at all sintering conditions. The maximum power density obtained at 800°C for the cell with the Ni0.75Co0.25-GDC anode was 118 mW•cm-2. Impedance spectroscopy analysis showed that the total cell resistance of both cell types became progressively larger when the operation time was prolonged to 10 h at 800°C, while the microstructure change was not observable by the SEM. The reason for the fast degradation will thus require further investigation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-121

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Iwata, Characterization of Ni-YSZ anode degradation for substrate-type solid oxide fuel cells, J. Electrochem. Soc. 143 (1996) 1521-1525.

DOI: 10.1149/1.1836673

Google Scholar

[2] A. Naoumidis, A. Tsoga, P. Nikolopoulos, H. Grübmeier, in: M. Dokiya, O. Yamamoto, H. Tagawa, S.C. Singhal (Eds.), Proc. 4th Int. Symp. Solid Oxide Fuel Cells (SOFC-IV), The Electrochemical Society, Pennington, NJ, 1995, p.667.

Google Scholar

[3] H. Itoh, T. Yamamoto, M. Mori, Configurational and electrical behavior of Ni-YSZ cermet with novel microstructure for solid oxide fuel cell anodes, J. Electrochem. Soc. 144 (1997) 641-646.

DOI: 10.1149/1.1837460

Google Scholar

[4] A. Ioselevich, A.A. Kornyshev, W. Lehnert, Degradation of solid oxide fuel cell anodes due to sintering of metal particles, J. Electrochem Soc. 144 (1997) 3010-3019.

DOI: 10.1149/1.1837952

Google Scholar

[5] D. Simwonis, F. Tietz, H. Tagawa, Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells, Solid State Ionics 132 (2000) 241-251.

DOI: 10.1016/s0167-2738(00)00650-0

Google Scholar

[6] Z. Jiao, N. Takagi, N. Shikazono, N. Kasagi, Study on local morphological changes of nickel in solid oxide fuel cell anode using porous Ni pellet electrode, J. Power Sources 196 (2011) 1019-1029.

DOI: 10.1016/j.jpowsour.2010.08.047

Google Scholar

[7] M.H. Pihlatie, A. Kaiser, M. Mogensen, M. Chen, Electrical conductivity of Ni-YSZ composites: Degradation due to Ni particle growth, Solid State Ionics 189 (2011) 82-90.

DOI: 10.1016/j.ssi.2011.02.001

Google Scholar

[8] H. Kishimoto, A. Suzuki, T. Shimonosono, M.E. Brito, K. Yamaji, T. Horita, F. Munakata, H. Yokokawa, Agglomeration behavior of nickel particles on YSZ and TiO2-doped YSZ electrolytes, J. Power Soursces 199 (2012) 174-178.

DOI: 10.1016/j.jpowsour.2011.10.047

Google Scholar

[9] C.M. Grgicak, M.M. Pakulska, J.S. O'Brien, J.B. Giorgi, Synergistic effects of Ni1-xCox-YSZ and Ni1-xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S, J. Power sources 183 (2008) 26-33.

DOI: 10.1016/j.jpowsour.2008.05.002

Google Scholar

[10] T. Ishihara, J. Yan, M. Shinagawa, H. Matsumoto, Ni–Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film, Electrochim. Acta 52 (2006) 1645-1650.

DOI: 10.1016/j.electacta.2006.03.103

Google Scholar

[11] A. Ringuedé, J.A. Labrincha, J.R. Frade, A combustion synthesis method to obtain alternative cermet materials for SOFC anodes, Solid State Ionics 141-142 (2001) 549-557.

DOI: 10.1016/s0167-2738(01)00744-5

Google Scholar

[12] A. Ringuedé, D. Bronine, J.R. Frade, Ni1-xCox/YSZ cermet anodes for solid oxide fuel cells, Electrochim. Acta 48 (2002) 437-442.

DOI: 10.1016/s0013-4686(02)00689-8

Google Scholar

[13] S.P. Jiang, S.H. Chan, A review of anode materials development in solid oxide fuel cells, J. Mat. Sci. 39 (2004) 4405-4439.

DOI: 10.1023/b:jmsc.0000034135.52164.6b

Google Scholar

[14] A.K. Chatterjee, R. Banerjee, M. Sharon, Enhancement of hydrogen oxidation activity at a nickel coated carbon beads electrode by cobalt and iron, J. Power Sources 137 (2004) 216-221.

DOI: 10.1016/j.jpowsour.2004.05.061

Google Scholar

[15] B.C.H. Steele, Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500°C, Solid State Ionics 129 (2000) 95-110.

DOI: 10.1016/s0167-2738(99)00319-7

Google Scholar

[16] S. Wang, T. Kobayashi, M. Dokiya, T. Hashimoto, Electrical and ionic conductivity of Gd-doped ceria, J. Electrochem. Soc. 147 (2000) 3606-3609.

DOI: 10.1149/1.1393946

Google Scholar

[17] R.O. Fuentes, R.T. Baker, Synthesis and properties of gadolinium-doped ceria solid solutions for IT-SOFC electrolytes, Int. J. Hydrogen Energy 33 (2008) 3480-3484.

DOI: 10.1016/j.ijhydene.2007.10.026

Google Scholar

[18] R.O. Fuentes, R.T. Baker, Structural, morphological and electrical properties of Gd0.1Ce0.9O1.95 prepared by a citrate complexation method, J. Power Sources 186 (2009) 268-277.

DOI: 10.1016/j.jpowsour.2008.09.119

Google Scholar

[19] M.C. Brant, L. Dessemond, Electrical degradation of LSM-YSZ interfaces, Solid State Ionics 138 (2000) 1-17.

DOI: 10.1016/s0167-2738(00)00769-4

Google Scholar

[20] C. Chervin, R.S. Glass, S.M. Kauzlarich, Chemical degradation of La1-xSrxMnO3/Y2O3-stabilized ZrO2 composite cathodes in the presence of current collector pastes, Solid State Ionics 176 (2005) 17-23.

DOI: 10.1016/j.ssi.2004.06.004

Google Scholar

[21] M.C. Brant, T. Matencio, L. Dessemond, R.Z. Domingues, Electrical degradation of porous and dense LSM/YSZ interface, Solid State Ionics 177 (2006) 915-921.

DOI: 10.1016/j.ssi.2006.02.012

Google Scholar

[22] C.K. Cho, B.H. Choi, K.T. Lee, Effect of Co alloying on the electrochemical performance of Ni–Ce0.8Gd0.2O1.9 anodes for hydrocarbon-fueled solid oxide fuel cells, J. Alloys Compd. 541 (2012) 433-439.

DOI: 10.1016/j.jallcom.2012.07.012

Google Scholar

[23] X.D. Zhou, B. Scarfino, H.U. Anderson, Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films, Solid State Ionics 175 (2004) 19-22.

DOI: 10.1016/j.ssi.2004.09.040

Google Scholar

[24] V. Gil, J. Tartaj, C. Moure, Chemical and thermomechanical compatibility between Ni-GDC anode and electrolytes based on ceria, Ceram. Int. 35 (2009) 839-846.

DOI: 10.1016/j.ceramint.2008.03.004

Google Scholar