[1]
L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, App. Phys. Lett. 57 (1990) 1046-1048.
DOI: 10.1063/1.103561
Google Scholar
[2]
M. A. Tischler, R. T. Collins, J. H. Stathis, and J. C. Tsang, Luminescence degradation in porous silicon, App. Phys. Lett. 60 (1992) 639-641.
DOI: 10.1063/1.106578
Google Scholar
[3]
L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò and F. Priolo, Optical gain in silicon nanocrystals, Nature 408 (2000) 440-444.
DOI: 10.1038/35044012
Google Scholar
[4]
G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch and L. Tsybeskov, Ordering and self-organization in nanocrystalline silicon, Nature 407 (2000) 358-361.
DOI: 10.1038/35030062
Google Scholar
[5]
L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, Nanocrystalline-silicon superlattice produced by controlled recrystallization, Appl. Phys. Lett. 72 (1998) 43-45.
DOI: 10.1063/1.120640
Google Scholar
[6]
E. Werwa, A. A. Seraphin, L. A. Chiu, Chuxin Zhou, and K. D. Kolenbrander, Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method, Appl. Phys. Lett. 64 (1994) 1821-1823.
DOI: 10.1063/1.111766
Google Scholar
[7]
Fabio Iacona, Giorgia Franzò, and Corrado Spinella, Correlation between luminescence and structural properties of Si nanocrystals J. Appl. Phys. 87 (2000) 1295-1303.
DOI: 10.1063/1.372013
Google Scholar
[8]
T. Fangsuwannarak, E. Pink, Y. Huang, Young H. Cho, G. Conibeer, T. Puzzer, and M. A. Green, Conductivity of self-organized silicon quantum dots embedded in silicon dioxide, Proc. SPIE 6037 (2005) 60370T.
DOI: 10.1117/12.638399
Google Scholar
[9]
R. J. Walters, G. I. Bourianoff, and H. A. Atwater, Field-effect electroluminescence in silicon nanocrystals, Nature Mater. 4 (2005) 143-146.
DOI: 10.1038/nmat1307
Google Scholar
[10]
G. Conibeer, M. A. Green, E. -C. Cho, D. Konig, Y. -H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, D. Mansfield, Silicon quantum dot nanostructures for tandem photovoltaic cells, Thin Solid Films 516 (2008).
DOI: 10.1016/j.tsf.2007.12.096
Google Scholar
[11]
G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr., J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, Ordering and self-organization in nanocrystalline silicon, Nature 407 (2000) 358-361.
DOI: 10.1038/35030062
Google Scholar
[12]
E. C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S. C. Park and M. A. Green, Silicon quantum dot/crystalline silicon solar cells, Nanotechnology 19, (2008) 245201.
DOI: 10.1088/0957-4484/19/24/245201
Google Scholar
[13]
H. Richter, Z. P. Wang, and L. Ley, The one phonon Raman spectrum in microcrystalline silicon, Solid State Commun. 39, (1981) 625.
DOI: 10.1016/0038-1098(81)90337-9
Google Scholar
[14]
H. Xia, Y.L. He, L.C. Wang, X.N. Liu, X.K. Zhang, D. Feng and H. E. Jackson, Phonon mode study of Si nanocrystals using micro-Raman spectroscopy, J. Appl. Phys. 78, (1995) 6705.
DOI: 10.1063/1.360494
Google Scholar
[15]
M. A. Fardad, Catalysts and the structure , of SiO2 sol-gel films, J. Material Science 35 (2000) 1835-1841.
Google Scholar
[16]
D. K. Schroder, Semiconductor material and device characterization, John wiley and Son, 1998 pp.594-597.
Google Scholar
[17]
J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi 15 (1966) 627.
DOI: 10.1002/pssb.19660150224
Google Scholar
[18]
L. Ding, T. P. Chen, Y. C. Liu, A. D. Trigg, F. R. Zhu, M. C. Tan, and S. Fung, Influence of nanocrystal size on optical properties of Si nanocrystals embedded in SiO2 synthesized by Si ion implantation, J. Appl. Phys. 101(2007)103525.
DOI: 10.1063/1.2730560
Google Scholar
[19]
S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles Kluwer Acdemic, Boston, (1999).
Google Scholar
[20]
Robert Hull, Editor, Properties of Crystalline Silicon, emis DataReviews Series No 20, INSPEC, IEE, London, UK, 1999, ISBN 0 85296 933 3.
Google Scholar
[21]
T. Globus, S. H. Jones, T. Digges, Jr., Analysis of Refractive Index and Absorption Coefficient of Silicon Membranes, Proceedings of the 1997 International Semiconductor Device Research Symposium, Charlottesville, VA, ISBN1-880920-05-0.
Google Scholar
[22]
S. Prakash, W. E. Mustain, S. Park, and P. A. Kohl, Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells, Journal of Power Sources 175 (2008) 91–97.
DOI: 10.1016/j.jpowsour.2007.09.060
Google Scholar
[23]
T. Uma, and M. Nogami, Synthesis and characterization of P2O5–SiO2–X (X = phosphotungstic acid) glasses as electrolyte for low temperature H2/O2 fuel cell application, Journal of Membrane Science, 280, (2006) 744–751.
DOI: 10.1016/j.memsci.2006.02.033
Google Scholar
[24]
T. Fangsuwannarak, E. Pink, Y. Huang, Y. H. Cho, G. Conibeer, T. Puzzer and M. A. Green, Conductivity of self-organized silicon quantum dots embedded in silicon dioxide, Proc. SPIE 6037-31 V. 6 (2005).
DOI: 10.1117/12.638399
Google Scholar