Optical Band Gaps and Electrical Conductance of Si Nanocrystals in SiO2 Matrix for Optoelectronic Applications

Article Preview

Abstract:

In this study, silicon nanocrystal (Si-nc) films were synthesized by compositing of Si-nc powder embedded in silicon oxide phase. The Si-nc film produced by the spin-coating methode using Tetraethylorthosilicate, ethanol, phosphoric acid, and Si-nc powder as suspension precursors. The variation in structural and optical properties of Si-nc sol films with the amounts of Si-nc powder have been characterized. Atomic force microscopy (AFM) shows that low density level of Si-nc power can result in the amount of porosity in the Si-nc films. It is found that when the Si-nc films have the higher Si-nc density, the small pores in the SiO2 phase were removed. In addition, optical energy gap (Eg) of Si-nc samples was evaluated by the Tauc plot method. It is a crucial attribute for a promising photonic device. The obtained optical bang gap values were extended from 1.10 eV to 1.40 eV as compared with the typical Si bulk. In addition, density of Si-nc clusters has a considerable effect on the electrical conductance of the Si-nc films measured at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-140

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, App. Phys. Lett. 57 (1990) 1046-1048.

DOI: 10.1063/1.103561

Google Scholar

[2] M. A. Tischler, R. T. Collins, J. H. Stathis, and J. C. Tsang, Luminescence degradation in porous silicon, App. Phys. Lett. 60 (1992) 639-641.

DOI: 10.1063/1.106578

Google Scholar

[3] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò and F. Priolo, Optical gain in silicon nanocrystals, Nature 408 (2000) 440-444.

DOI: 10.1038/35044012

Google Scholar

[4] G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch and L. Tsybeskov, Ordering and self-organization in nanocrystalline silicon, Nature 407 (2000) 358-361.

DOI: 10.1038/35030062

Google Scholar

[5] L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, Nanocrystalline-silicon superlattice produced by controlled recrystallization, Appl. Phys. Lett. 72 (1998) 43-45.

DOI: 10.1063/1.120640

Google Scholar

[6] E. Werwa, A. A. Seraphin, L. A. Chiu, Chuxin Zhou, and K. D. Kolenbrander, Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method, Appl. Phys. Lett. 64 (1994) 1821-1823.

DOI: 10.1063/1.111766

Google Scholar

[7] Fabio Iacona, Giorgia Franzò, and Corrado Spinella, Correlation between luminescence and structural properties of Si nanocrystals J. Appl. Phys. 87 (2000) 1295-1303.

DOI: 10.1063/1.372013

Google Scholar

[8] T. Fangsuwannarak, E. Pink, Y. Huang, Young H. Cho, G. Conibeer, T. Puzzer, and M. A. Green, Conductivity of self-organized silicon quantum dots embedded in silicon dioxide, Proc. SPIE 6037 (2005) 60370T.

DOI: 10.1117/12.638399

Google Scholar

[9] R. J. Walters, G. I. Bourianoff, and H. A. Atwater, Field-effect electroluminescence in silicon nanocrystals, Nature Mater. 4 (2005) 143-146.

DOI: 10.1038/nmat1307

Google Scholar

[10] G. Conibeer, M. A. Green, E. -C. Cho, D. Konig, Y. -H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, D. Mansfield, Silicon quantum dot nanostructures for tandem photovoltaic cells, Thin Solid Films 516 (2008).

DOI: 10.1016/j.tsf.2007.12.096

Google Scholar

[11] G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr., J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, Ordering and self-organization in nanocrystalline silicon, Nature 407 (2000) 358-361.

DOI: 10.1038/35030062

Google Scholar

[12] E. C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S. C. Park and M. A. Green, Silicon quantum dot/crystalline silicon solar cells, Nanotechnology 19, (2008) 245201.

DOI: 10.1088/0957-4484/19/24/245201

Google Scholar

[13] H. Richter, Z. P. Wang, and L. Ley, The one phonon Raman spectrum in microcrystalline silicon, Solid State Commun. 39, (1981) 625.

DOI: 10.1016/0038-1098(81)90337-9

Google Scholar

[14] H. Xia, Y.L. He, L.C. Wang, X.N. Liu, X.K. Zhang, D. Feng and H. E. Jackson, Phonon mode study of Si nanocrystals using micro-Raman spectroscopy, J. Appl. Phys. 78, (1995) 6705.

DOI: 10.1063/1.360494

Google Scholar

[15] M. A. Fardad, Catalysts and the structure , of SiO2 sol-gel films, J. Material Science 35 (2000) 1835-1841.

Google Scholar

[16] D. K. Schroder, Semiconductor material and device characterization, John wiley and Son, 1998 pp.594-597.

Google Scholar

[17] J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi 15 (1966) 627.

DOI: 10.1002/pssb.19660150224

Google Scholar

[18] L. Ding, T. P. Chen, Y. C. Liu, A. D. Trigg, F. R. Zhu, M. C. Tan, and S. Fung, Influence of nanocrystal size on optical properties of Si nanocrystals embedded in SiO2 synthesized by Si ion implantation, J. Appl. Phys. 101(2007)103525.

DOI: 10.1063/1.2730560

Google Scholar

[19] S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles Kluwer Acdemic, Boston, (1999).

Google Scholar

[20] Robert Hull, Editor, Properties of Crystalline Silicon, emis DataReviews Series No 20, INSPEC, IEE, London, UK, 1999, ISBN 0 85296 933 3.

Google Scholar

[21] T. Globus, S. H. Jones, T. Digges, Jr., Analysis of Refractive Index and Absorption Coefficient of Silicon Membranes, Proceedings of the 1997 International Semiconductor Device Research Symposium, Charlottesville, VA, ISBN1-880920-05-0.

Google Scholar

[22] S. Prakash, W. E. Mustain, S. Park, and P. A. Kohl, Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells, Journal of Power Sources 175 (2008) 91–97.

DOI: 10.1016/j.jpowsour.2007.09.060

Google Scholar

[23] T. Uma, and M. Nogami, Synthesis and characterization of P2O5–SiO2–X (X = phosphotungstic acid) glasses as electrolyte for low temperature H2/O2 fuel cell application, Journal of Membrane Science, 280, (2006) 744–751.

DOI: 10.1016/j.memsci.2006.02.033

Google Scholar

[24] T. Fangsuwannarak, E. Pink, Y. Huang, Y. H. Cho, G. Conibeer, T. Puzzer and M. A. Green, Conductivity of self-organized silicon quantum dots embedded in silicon dioxide, Proc. SPIE 6037-31 V. 6 (2005).

DOI: 10.1117/12.638399

Google Scholar