Predicting Dimensional Accuracy of Laser Welded Aluminum Add-On Body Parts

Article Preview

Abstract:

Laser welding of complex aluminum add-on body parts such as vehicle doors, is a common joining technology in the automotive industry. Besides the many advantages (e.g. high processing speed) laser welding provides, temperature induced distortions are an important task to deal with. In the last twenty years, several simplified FE methods, which predict welding distortion (weld seams, spot welds) of large assemblies, were presented. In order to simulate the distortion of large car body components properly, realistic clamping conditions need to be considered [1, 2, 3]. Furthermore, the calibration process of simplified models has to be examined systematically, to find out their limits and achieve optimal simulation results [4]. In this paper, a new FE model is presented to predict distortion of laser welded structures, based on a shrinkage volume approach. Effective surface based clamping conditions (derived of the real clamping device) and effects of previous forming processes are considered. The simplified model was examined due to an extensive design of experiments. Not only simple, but even complex simulated specimens match with the experimental results very well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

463-470

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. I. Matuszyk: shape characterization of sheet metal assembly variation with a view to quality assessment and dimensional control, Dissertation, Australian National University, 2008 [2] T. Schenk: Modeling of welding distortion, the influence of clamping and sequencing, Dissertation, TU Delft, Netherlands, 2011 [3] A. Eckert: Prognose der Maßhaltigkeit punktförmig mechanisch gefügter Karosserieanbauteile, Dissertation, Technische Universität Chemnitz, 2012 [4] D. Tikhomirov, B. Rietman, K. Kose, M. Makkink: Computing Welding Distortion: Comparison of different industrially applicable methods, Advanced Materials Research Vols. 6-8, (2005) 195-202, [5] O. Hahn, J.R. Kurzok, A. Rohde, T. Thesing: Rechnergestützte Dimensionierung widerstandspunktgeschweißter und mechanisch gefügter Bauteile, Schweißen und Schneiden 51 (1), (1999), 17-23 [6] Y. Ueda, K. Fukuda, and M. Tanigawa: New measuring method of three dimensional residual stresses based on theory of inherent strain, Transactions of JWRI 8(2), (1979), 249-256 [7] Y. Ueda, M.G. Yuan: Prediction of residual stresses in butt welded plates using inherent strains. Transactions of the ASME, Journal of Engineering Materials and Technology 115(10), (1993), 417 to 423. [8] Y. Luo, H. Murakawa, Y. Ueda: Prediction of welding deformation and residual stress by elastic FEM based on inherent strain, (Report I) – Mechanism of inherent strain production, Transactions of JWRI 26(2), (1997), 49–57 [9] H. Murakawa, D. Deng, N. Ma, J. Wang: Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures, Computational Materials Science 51, Elsevier B.V. (2011), 43–52 [10] S. R. Daniewicz, M. D. McAninch, B. Mc-Farland, D. Knoll: Application of distortion control technology during fabrication of large offshore structures, AWS/ONRL International Conference on Modeling and Control of Joining Processes, Orlando, Fla., 1993 [11] A. Bachorski, M. J. Painter, A. J. Smailes, M.A. Wahab: Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach, Journal of Materials Processing Technology 92-93 (1999) 405-409. [12] C. Stapelfeld, A. Kloshek, N. Doynov, V. G. Michailov: Analytisches Schrumpfkraftmodell und Berechnungsprogramm zur Bestimmung des schweißbedingten Verzugs, DVS-Berichte, Band 250, DVS Verlag Düsseldorf, (2008), 401-405 [13] D. Tikhomirov, B. Rietman, C. Schwenk, T. Franz: Methoden der Schweißverzugssimulation für die Anwendung in der Automobilindustrie. Schweißen und Schneiden, 59 (12), (2007), 678-680. [14] P. Michaleris, A. DeBiccari: Prediction of Welding Distortion, Welding Journal, vol. 76(4), (1997), 172-180 [15] L.F. Andersen: Residual Stresses and deformations in steel Structures, PhD Dissertation, University of Denmark, 2000 [16] S. Christoph, D. Nikolay, M. Vesselin: Hybride Berechnungsansätze zur Prognostizierung und Minimierung des Verzugs komplexer Schweißkonstruktionen. Lehrstuhl Fügetechnik, Technische Universität Cottbus, Tagungsband SYSWELD Forum 2009 [17] W. Perret, R. Thater, U. Alber, C. Schwenk, M. Rethmeier: Case Study for Welding Simulation in the Automotive Industry, Welding in the World 55, No. 11/12, (2011), 89-98 [18] C. Hackmair, E. Werner, M. Pönisch. Application of welding simulation for chassis components within the development of manufacturing methods, Computational Materials Science, Vol. 28, (2003), 540-547 [19] C. Wentao: In-plane shrinkage strains and their effects on welding distortion in thin-wall structures Dissertation, Ohio State University, 2005 [20] L. Papadakis: A computer aided chaining approach for predicting the shape accuracy in manufacture of automotive structures, Production Engineering, Vol. 4, Issue 4, (2010), 349-355 [21] U. Alber, R. Thater: Anwendung der Schweißsimulation an einem Beispiel aus der Automobilindustrie, Workshop "Anwendungsnahe Schweißsimulation" 19.05.11 Berlin, 2011 [22] B. Lenz: Finite Elemente-Modellierung des Laserstrahlschweißens für den Einsatz in der Fertigungsplanung. Dissertation, Technische Universität München, 2001 [23] X. Fan, L. Masters, R. Roy, D. Williams: Simulation of distortion induced in assemblies by spot welding, Engineering Manufacture, Vol. 221, 2007 [24] R. Neugebauer, M. Roessinger, M. Wahl, F. Schulz, A. Eckert, W. Schuetzle: Predicting Dimensional Accuracy of Mechanically Joined Car Body Assemblies, SheMet Conference 2011, Leuven, Belgium.

Google Scholar