Models of Adhesive Bonding of Hybrid Structures

Article Preview

Abstract:

Adhesives are often based on polymers materials. They are good candidates in order to manufacture adhesives joint because of their thermomechanical properties and their processing which is easier than other materials. Epoxy resins are widely used as adhesives joint. We can meet them in various industrial areas like car, spatial and aerospace domains. Because of numerous combinations between epoxy and amine chemical functions, these joints may be efficient at high or at low temperature. Indeed, close to their glassy transition temperature (Tg), exists an elastic modulus / ductility couple for which, shear stress is optimum: the Optimum Stress Zone (OSZ)[ which is restricted on limited temperatures range. Our study consists in formulating an epoxy amine joint able to be efficient on an extended temperatures range i.e. a joint able to ensure a stress continuity over a large range of temperatures, for example-50°C to 100°C. To reach this objective, we propose an evolution of the Multi Adhesive Joints (MAJ): an adhesive joint presenting a gradient of mechanical properties. To make this adhesive joint formulation possible, its necessary to control kinetics diffusion at the adhesive scale (200μm to 500μm) between the low temperature adhesive (LTA) and the high temperature adhesive (HTA). The diffusion study will be carried out by using a rheometer. For such adhesive thickness, the rheometer compliance may have an influence on the results. Therefore, this present work proposes to identify and to set up the key parameters, which allow following kinetics diffusion in a rheometer for dimensions similar to those of bonding assembly, by checking the measurements are performed in the linear viscoelastic domain. In a first part, the morphological, mechanical and thermomechanical properties of the nanostructured thermosets versus time are performed. And, the second part will deal with the optimization of the key parameters by performing dynamic shear tests versus time on HTA and LTA samples in sight of kinetics diffusion study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-155

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. J. Hart-Smith, « Adhesive bonded double lap joints », Nasa, Langley, Technical report CR-112235, 1973.

Google Scholar

[2] Da Silva et Adams, R.D., « Adhesive joints at high and low temperatures using similar and dissimilar adherends and dual adhesives », Int. J. Adhes. Adhes., vol.27, n°3, p.216, 2007.

DOI: 10.1016/j.ijadhadh.2006.04.002

Google Scholar

[3] T. Djilali, V. Nassiet, et B. Hassoune-Rhabbour, « Graft Interpenetrating Continuous Epoxy-Polysiloxane polymeric network », Key Engineering Materials, vol. 446, p.111‑119, 2010.

DOI: 10.4028/www.scientific.net/kem.446.111

Google Scholar

[4] V. Sauvant et J. L. Halary, « Improvement of the performance of epoxy-amine thermosets by antiplasticizer-induced nano-scale phase separation during cure », Composites Science and Technology, vol. 62, no 4, p.481‑486, mars 2002.

DOI: 10.1016/s0266-3538(01)00137-3

Google Scholar

[5] V. Sauvant et J. Halary, « Novel formulations of high-performance epoxy-amine networks based on the use of nanoscale phase-separated antiplasticizers », Journal of Applied Polymer Science, vol. 82, no 3, p.759‑774, oct. 2001.

DOI: 10.1002/app.1902

Google Scholar

[6] X. Yang, F. Yi, Z. Xin, et S. Zheng, « Morphology and mechanical properties of nanostructured blends of epoxy resin with poly(epsilon-caprolactone)-block-poly(butadiene-co-acrylonitrile)-block- poly(epsilon-caprolactone) triblock copolymer », Polymer, vol. 50, no 16, p.4089‑4100, juill. 2009.

DOI: 10.1016/j.polymer.2009.06.030

Google Scholar

[7] T. Fine, « Block copolymers designed for epoxy / General presentation: Nanostrength for epoxy », Arkéma, 2009.

Google Scholar

[8] W. Salgueiro, J. Ramos, A. Somoza, S. Goyanes, et I. Mondragón, « Nanohole volume dependence on the cure schedule in epoxy thermosetting networks: A PALS study », Polymer, vol. 47, no 14, p.5066‑5070, 2006.

DOI: 10.1016/j.polymer.2006.05.032

Google Scholar

[9] J. G. Williams, « In A Linear Elastic Fracture Mechanics Standard for Determining Kc and Gc for Plastics », EGF Task Group on Polymers and Composites, 1989.

Google Scholar

[10] J. Brandrup, H. Immergut, E. A. Grulke, A. Abe, et Bloch, Polymer HandBook, vol. 4th Edition. John Wiley & Sons, 1999.

Google Scholar

[11] C. K. Riew et J. K. Gilham, Rubber-modified Thermoset Resins, vol. 208. American Chemical Society, 1984.

Google Scholar

[12] J.-P. Pascault et W. Roberto J.J., Epoxy Polymers New Materials and Innovations. Wiley-VCH, 2010.

Google Scholar

[13] M. H. Yin et S. X. Zheng, « Ternary thermosetting blends of epoxy resin, poly(ethylene)oxide and poly(epsilon-caprolactone) », Macromol. Chem. Phys., vol. 206, no 9, p.929‑937, mai 2005.

DOI: 10.1002/macp.200400512

Google Scholar

[14] A. Kinloch, S. Shaw, et D. Hunston, « Deformation and Fracture-Behavior of a Rubber-Toughened Epoxy .2. Failure Criteria », Polymer, vol. 24, no 10, p.1355‑1363, 1983.

DOI: 10.1016/0032-3861(83)90071-x

Google Scholar

[15] V. Rebizant, A. S. Venet, F. Tournilhac, E. Girard-Reydet, C. Navarro, J. P. Pascault, et L. Leibler, « Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers », Macromolecules, vol. 37, no 21, p.8017‑8027, oct. 2004.

DOI: 10.1021/ma0490754

Google Scholar

[16] P. Montois, V. Nassiet, J. A. Petit, et Y. Baziard, « Viscosity effect on epoxy-diamine/metal interphases - Part 1: Thermal and thermomechanical behaviour », Int. J. Adhes. Adhes., vol. 26, no 6, p.391‑399, sept. 2006.

DOI: 10.1016/j.ijadhadh.2005.06.003

Google Scholar

[17] P. Montois, V. Nassiet, J. A. Petit, et D. Adrian, « Viscosity effect on epoxy-diamine/metal interphases - Part II: Mechanical resistance and durability », Int. J. Adhes. Adhes., vol. 27, no 2, p.145‑155, mars 2007.

DOI: 10.1016/j.ijadhadh.2006.03.001

Google Scholar

[18] P. Cassagnau et F. Fenouillot, « Rheological study of mixing in molten polymers: 2-mixing of reactive systems », Polymer, vol. 45, no 23, p.8031‑8040, oct. 2004.

DOI: 10.1016/j.polymer.2004.09.028

Google Scholar

[19] A. BenAllal, « polymères fondus aux interfaces - Etudes rhéologiques », Université de Pau et des Pays de l'Adour, Laboratoire de Physique des Polymères Industriels (Pau), 1991.

DOI: 10.1163/_afco_asc_1195

Google Scholar