[1]
H.N.B. Schmidt, T.L. Dickerson, J.H. Hattel, Material flow in butt friction stir welds in AA2024-T3, Acta Mater 54 ( 2006) 1199–1209.
DOI: 10.1016/j.actamat.2005.10.052
Google Scholar
[2]
M.A. Sutton, B. Yang, A.P. Reynolds, R. Taylor, Microstructural studies of friction stir welds in 2024-T3 aluminum, Mat Sci Eng A-Struct 323 (2002) 160–166.
DOI: 10.1016/s0921-5093(01)01358-2
Google Scholar
[3]
B. Yang, J. Yan, M.A. Sutton, A.P. Reynolds, Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds Part I. Metallurgical studies, Mat Sci Eng A-Struct 364 (2004) 55–65.
DOI: 10.1016/s0921-5093(03)00532-x
Google Scholar
[4]
C. Genevois, D. Fabrègue, A. Deschamps, W.J. Poole, On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy, Mater Sci and Eng A-Struct 441 (2006) p.39–48
DOI: 10.1016/j.msea.2006.07.151
Google Scholar
[5]
S.A. Khodir, T. Shibayanagi, M. Naka, Microstructure and Mechanical Properties of Friction Stir Welded AA2024-T3 Aluminum Alloy, Mater Trans 47 (2006) 185–193
DOI: 10.2320/matertrans.47.185
Google Scholar
[6]
A.L. Etter, T. Baudin, N. Fredj, R. Penelle, Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds, Mat Sci Eng A-Struct 445–446 (2007) 94–99
DOI: 10.1016/j.msea.2006.09.036
Google Scholar
[7]
K.V. Jata and S.L. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scripta Mater, 43 (2000) 743–749
DOI: 10.1016/s1359-6462(00)00480-2
Google Scholar
[8]
A. Yazdipour, A. Shafiei M, K. Dehghani, Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083, Mat Sci Eng A-Struct 527 (2009) 192–197.
DOI: 10.1016/j.msea.2009.08.040
Google Scholar
[9]
T.R. McNelley, S. Swaminathan, J.Q. Su, Recrystallization mechanisms during friction stir welding/processing of aluminum alloys, Scripta Mater 58 (2008) 349–354.
DOI: 10.1016/j.scriptamat.2007.09.064
Google Scholar
[10]
J.Q. Su, T.W. Nelson, C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys, Mat Sci Eng A-Struct 405 (2005) 277–286.
DOI: 10.1016/j.msea.2005.06.009
Google Scholar
[11]
T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S.W. Chung, Y. Takigawa, K. Higashi, Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy, Mat Sci Eng A-Struct 456 (2007) 344–349
DOI: 10.1016/j.msea.2006.12.079
Google Scholar
[12]
H. Liu, H. Zhang, Q. Pan, L. Yu, Effect of friction stir welding parameters on microstructural characteristics and mechanical properties of 2219-T6 aluminum alloy joints, Int J Mater Form 5 (2012) 235–241
DOI: 10.1007/s12289-011-1048-5
Google Scholar
[13]
G. Buffa, L. Fratini, R. Shivpuri, CDRX modelling in friction stir welding of AA7075-T6 aluminum alloy: Analytical approaches, J Mater Process Tech 191 (2007) 356–359
DOI: 10.1016/j.jmatprotec.2007.03.033
Google Scholar
[14]
P. Carlone, G.S. Palazzo, Experimental analysis of the influence of process parameters on residual stress in AA2024-T3 friction stir welds, Key Eng Mat 504-506 (2012) 753-758.
DOI: 10.4028/www.scientific.net/kem.504-506.753
Google Scholar
[15]
P. Carlone, R.G. Citarella, M. Lepore, G.S. Palazzo, Numerical Crack Growth Analysis in AA2024-T3 Friction Stir Welded Butt Joints, Proceedings of the 8th International Conference on Engineering Computational Technology
DOI: 10.4203/ccp.100.91
Google Scholar
[16]
D. Jacquin, B. de Meester, A. Simar, D. Deloison, F. Montheillet, C. Desrayaud, A simple Eulerian thermomechanical modeling of friction stir welding, J Mater Process Tech 211 (2011) 57–65
DOI: 10.1016/j.jmatprotec.2010.08.016
Google Scholar
[17]
H Schmidt, J Hattel, A local model for the thermomechanical conditions in friction stir welding, Model Simul Mater Sc 13 (2005) 77–93.
DOI: 10.1088/0965-0393/13/1/006
Google Scholar
[18]
P.A. Colegrove, H.R. Shercliff, 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile, J Mater Process Tech 169 (2005) 320–327.
DOI: 10.1016/j.jmatprotec.2005.03.015
Google Scholar
[19]
H. Atharifar, D. Lin, R. Kovacevic, Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding, J Mater Eng Perform 18 (2009) 339–350.
DOI: 10.1007/s11665-008-9298-1
Google Scholar
[20]
S.Z. Aljoaba, I.S Jawahir, O.W Dillon Jr, M.H. Ali, M.K. Khraisheh, Modelling of Friction Stir Processing Using 3D CFD Analysis, Int J Mater Form 2 (2009) 315–318.
DOI: 10.1007/s12289-009-0662-y
Google Scholar
[21]
R.K. Uyyuru, S.V. Kailas, Numerical Analysis of Friction Stir Welding Process, J Mater Eng Perform15 (2006) 505-518.
DOI: 10.1361/105994906x136070
Google Scholar
[22]
R. Nandan, G.G. Roy, T. Debroy, Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding, Metall Mater Trans A 37 (2006) 1247-1259.
DOI: 10.1007/s11661-006-1076-9
Google Scholar
[23]
I. Flitta, T. Sheppard, Material flow during the extrusion of simple and complex cross-sections using FEM, Mater Sci Tech 21 (2005) 648-656.
DOI: 10.1179/174328405x43045
Google Scholar
[24]
Zainul Huda, Tuan Zaharinie, Kinetics of grain growth in 2024-T3: An aerospace aluminum alloy, J Alloy Compd 478 (2009) 128–132.
DOI: 10.1016/j.jallcom.2008.11.071
Google Scholar