[1]
D.E. Green, K.W. Neale, S.R. MacEwen, A. Makinde, R. Perrin, Experimental investigation of the biaxial behaviour of an aluminium sheet, Int. J. Plast. 20 (2004) 1677-1706.
DOI: 10.1016/j.ijplas.2003.11.012
Google Scholar
[2]
I. Zidane, D. Guiness, L. Léotoing, E. Ragneau, Development of an in-plane biaxial test for forming limit curve (FLC) characterization of metallic sheets, Meas. Sci. Tech. 21 (2010) 1-11.
DOI: 10.1088/0957-0233/21/5/055701
Google Scholar
[3]
D. Banabic, F. Barlat, O. Cazacu, T. Kuwabara, Advances in anisotropy and formability, Int. J. Mater. Form. 3 (2010) 165-189.
DOI: 10.1007/s12289-010-0992-9
Google Scholar
[4]
A. Hannon, P. Tiernan, A review of planar tensile test systems for sheet metal, J. Mater. Process. Tech. 198 (2008) 1-13.
Google Scholar
[5]
M.C. Oliveira, J.L. Alves, B.M. Chaparro, L.F. Menezes, Study on the influence of work-hardening modeling in springback prediction, Int. J. Plast. 23 (2007) 516-543.
DOI: 10.1016/j.ijplas.2006.07.003
Google Scholar
[6]
B.M. Chaparro, S. Thuillier, L.F. Menezes, P.Y. Manach, J.V. Fernandes, Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms, Comp. Mater. Sci. 44 (2008) 339-346.
DOI: 10.1016/j.commatsci.2008.03.028
Google Scholar
[7]
H. Aguir, J.L. Alves, M.C. Oliveira, L.F. Menezes, H. BelHadjSalah, Cazacu and Barlat Criterion Identification Using the Cylindrical Cup Deep Drawing Test and the Coupled Artificial Neural Networks – Genetic Algorithm Method, Key Eng. Mat., 504-506 (2012) 637-642.
DOI: 10.4028/www.scientific.net/kem.504-506.637
Google Scholar
[8]
P.A. Prates, J.V. Fernandes, M.C. Oliveira, N.A. Sakharova, L.F. Menezes, On the characterization of the plastic anisotropy in orthotropic sheet metals with a cruciform biaxial test, IOP Conf. Ser.: Mater. Sci. Eng. 10 (2010) 012142.
DOI: 10.1088/1757-899x/10/1/012142
Google Scholar
[9]
R. Hill, A theory of yielding and plastic flow of anisotropic metals, Proc. Math. Phys. Eng. Sci. 193 (1948) 281-297.
Google Scholar
[10]
Bouvier, S., Teodosiu, C., Maier, C., Banu, M., Tabacaru, V.; Selection and identification of elastoplastic models for the materials used in the benchmarks, WP3, Task 1, 18-Months progress report of the Digital Die Design Systems (3DS), IMS 1999 000051, 2001.
Google Scholar
[11]
T. Yamashita, Analysis of anisotropic material, M.Sc. Thesis, Fritz J. and Dolores H. Russ College of Engineering and Technology, Ohio University, 1996.
Google Scholar
[12]
M. Rabahallah, T. Balan, S. Bouvier, B. Bacroix, F. Barlat, K. Chung, C. Teodosiu, Parameter identification of advanced plastic strain rate potentials and impact on plastic anisotropy prediction, Int. J. Plast. 25 (2009) 491-512.
DOI: 10.1016/j.ijplas.2008.03.006
Google Scholar
[13]
M.C. Oliveira, J.L. Alves and L.F. Menezes, Algorithms and strategies for treatment of large deformation frictional contact in the numerical simulation of deep drawing process, Arch. Comput. Meth. Eng. 15 (2008) 113-162.
DOI: 10.1007/s11831-008-9018-x
Google Scholar
[14]
T.C. Resende, T. Balan, F. AbedMeraim, S. Bouvier, S.S. Sablin, Application of a dislocation based model for Interstitial Free (IF) steels to typical stamping simulations, NUMIFORM 2010: Proceedings of the 10th International Conference on Numerical Methods in Industrial Forming Processes Dedicated to Professor O. C. Zienkiewicz (1921-2009). AIP Conf. Proc. 1252 (2010) 1339-1346.
DOI: 10.1063/1.3457539
Google Scholar
[15]
H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solid. 1 (1952) 1-18.
Google Scholar
[16]
J. Lemaître, J-L Chaboche, Mechanics of solid materials, Cambridge University Press, Cambridge, 1985.
Google Scholar