How to Combine the Parameters of the Yield Criteria and the Hardening Law

Article Preview

Abstract:

The numerical simulation of sheet metal forming processes needs the accurate identification of the material parameters, for a given constitutive model. This identification can follow different methodologies and different sets of experimental data can be used, which lead to distinct sets of material parameters. In order to accurately compare the results of several methodologies, it is necessary to guarantee uniformity of their presentation. In this work, the correspondence between sets of parameters of the Hill’48 criterion is explored. The meaning of the “isotropic values” of the parameters associated with the out-of-plane stresses components is discussed and a required condition is proposed, in order to properly compare numerical simulation results obtained by using different input sets of constitutive parameters, identified by different procedures. Finite element simulations of complex shaped forming process, involving strain-path changes, are carried out in order to support the analysis.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

1195-1202

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.E. Green, K.W. Neale, S.R. MacEwen, A. Makinde, R. Perrin, Experimental investigation of the biaxial behaviour of an aluminium sheet, Int. J. Plast. 20 (2004) 1677-1706.

DOI: 10.1016/j.ijplas.2003.11.012

Google Scholar

[2] I. Zidane, D. Guiness, L. Léotoing, E. Ragneau, Development of an in-plane biaxial test for forming limit curve (FLC) characterization of metallic sheets, Meas. Sci. Tech. 21 (2010) 1-11.

DOI: 10.1088/0957-0233/21/5/055701

Google Scholar

[3] D. Banabic, F. Barlat, O. Cazacu, T. Kuwabara, Advances in anisotropy and formability, Int. J. Mater. Form. 3 (2010) 165-189.

DOI: 10.1007/s12289-010-0992-9

Google Scholar

[4] A. Hannon, P. Tiernan, A review of planar tensile test systems for sheet metal, J. Mater. Process. Tech. 198 (2008) 1-13.

Google Scholar

[5] M.C. Oliveira, J.L. Alves, B.M. Chaparro, L.F. Menezes, Study on the influence of work-hardening modeling in springback prediction, Int. J. Plast. 23 (2007) 516-543.

DOI: 10.1016/j.ijplas.2006.07.003

Google Scholar

[6] B.M. Chaparro, S. Thuillier, L.F. Menezes, P.Y. Manach, J.V. Fernandes, Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms, Comp. Mater. Sci. 44 (2008) 339-346.

DOI: 10.1016/j.commatsci.2008.03.028

Google Scholar

[7] H. Aguir, J.L. Alves, M.C. Oliveira, L.F. Menezes, H. BelHadjSalah, Cazacu and Barlat Criterion Identification Using the Cylindrical Cup Deep Drawing Test and the Coupled Artificial Neural Networks – Genetic Algorithm Method, Key Eng. Mat., 504-506 (2012) 637-642.

DOI: 10.4028/www.scientific.net/kem.504-506.637

Google Scholar

[8] P.A. Prates, J.V. Fernandes, M.C. Oliveira, N.A. Sakharova, L.F. Menezes, On the characterization of the plastic anisotropy in orthotropic sheet metals with a cruciform biaxial test, IOP Conf. Ser.: Mater. Sci. Eng. 10 (2010) 012142.

DOI: 10.1088/1757-899x/10/1/012142

Google Scholar

[9] R. Hill, A theory of yielding and plastic flow of anisotropic metals, Proc. Math. Phys. Eng. Sci. 193 (1948) 281-297.

Google Scholar

[10] Bouvier, S., Teodosiu, C., Maier, C., Banu, M., Tabacaru, V.; Selection and identification of elastoplastic models for the materials used in the benchmarks, WP3, Task 1, 18-Months progress report of the Digital Die Design Systems (3DS), IMS 1999 000051, 2001.

Google Scholar

[11] T. Yamashita, Analysis of anisotropic material, M.Sc. Thesis, Fritz J. and Dolores H. Russ College of Engineering and Technology, Ohio University, 1996.

Google Scholar

[12] M. Rabahallah, T. Balan, S. Bouvier, B. Bacroix, F. Barlat, K. Chung, C. Teodosiu, Parameter identification of advanced plastic strain rate potentials and impact on plastic anisotropy prediction, Int. J. Plast. 25 (2009) 491-512.

DOI: 10.1016/j.ijplas.2008.03.006

Google Scholar

[13] M.C. Oliveira, J.L. Alves and L.F. Menezes, Algorithms and strategies for treatment of large deformation frictional contact in the numerical simulation of deep drawing process, Arch. Comput. Meth. Eng. 15 (2008) 113-162.

DOI: 10.1007/s11831-008-9018-x

Google Scholar

[14] T.C. Resende, T. Balan, F. AbedMeraim, S. Bouvier, S.S. Sablin, Application of a dislocation based model for Interstitial Free (IF) steels to typical stamping simulations, NUMIFORM 2010: Proceedings of the 10th International Conference on Numerical Methods in Industrial Forming Processes Dedicated to Professor O. C. Zienkiewicz (1921-2009). AIP Conf. Proc. 1252 (2010) 1339-1346.

DOI: 10.1063/1.3457539

Google Scholar

[15] H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solid. 1 (1952) 1-18.

Google Scholar

[16] J. Lemaître, J-L Chaboche, Mechanics of solid materials, Cambridge University Press, Cambridge, 1985.

Google Scholar