[1]
Z. Marciniak, Mechanics of Sheet Metal Forming, Butterworth-Heinemann, 2002.
Google Scholar
[2]
R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. Lond. A, 193 (1948) 281–297.
Google Scholar
[3]
P. B. Mellor, Sheet metal forming, Int. Metals. Rev. 26 (1981) 1–20.
Google Scholar
[4]
P. B. Mellor, A. Parmer, Plasticity of sheet metal forming, In: D. P. Koistinen, Wang, N. M. (Eds.), Mechanics of Sheet Metal Forming, Plenum Press, New York, p.53–74 1978.
DOI: 10.1007/978-1-4613-2880-3_3
Google Scholar
[5]
R. Hill, Theoretical plasticity of textured aggregates, Math. Proc. Camb. Philos. Soc. 85 (1979) 179–191.
DOI: 10.1017/s0305004100055596
Google Scholar
[6]
R. Hill, Constitutive modeling of orthotropic plasticity in sheet metals, J. Mech. Phys. Solids 38 (1990) 405–417.
Google Scholar
[7]
R. Hill, A user-friendly theory of orthotropic plasticity in sheet metals, Int. J. Mech. Sci. 35 (1993) 19–25.
Google Scholar
[8]
F. Barlat, J. Lian, Plastic behavior and stretch ability of sheet metals, Part I: a yield function for orthotropic sheets under plane stress conditions, Int. J. Plast. 5 (1989) 51–56.
DOI: 10.1016/0749-6419(89)90019-3
Google Scholar
[9]
F. Barlat, D. J. Lege, J. C. Brem, A six-component yield function for anisotropic materials, Int. J. Plast. 7 (1991) 693–712.
DOI: 10.1016/0749-6419(91)90052-z
Google Scholar
[10]
F. Barlat, R. C. Becker, Y. Hayashida, Y.Maeda, M. Yanagawa, K. Chung, J. C. Brem, D. J. Lege, K. Matsui, S. J. Murtha, S. Hattori, Yielding description for solution strengthened aluminum alloys, Int. J. Plast. 13 (1997) 385–401.
DOI: 10.1016/s0749-6419(97)80005-8
Google Scholar
[11]
F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, S. H. Choi, F. Pourboghrat, E. Chu, D. J. Lege, Plane stress yield function for aluminum alloy sheets, Int. J. Plast. 19 (2003) 1297–1319.
DOI: 10.1016/s0749-6419(02)00019-0
Google Scholar
[12]
F. Barlat, H. Aretz, J. W. Yoon, M. E. Karabin, J. C. Brem, R. E. Dick, Linear transformation based anisotropic yield functions, Int. J. Plast. 21 (2005) 1009–1039.
DOI: 10.1016/j.ijplas.2004.06.004
Google Scholar
[13]
A. P. Karafillis, M. C. Boyce, A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. Mech. Phys. Solids 41 (1993) 1859–1886.
DOI: 10.1016/0022-5096(93)90073-o
Google Scholar
[14]
D. Banabic, H. Aretz, D. S. Comsa, L. Paraianu, An improved analytical description of orthotropy in metallic sheets, Int. J. Plast. 21 (2005) 493–512.
DOI: 10.1016/j.ijplas.2004.04.003
Google Scholar
[15]
H. C. Wu, Anisotropic plasticity for sheet metals using the concept of combined isotropic–kinematic hardening, Int. J. Plast. 18 (2002) 1661–1682.
DOI: 10.1016/s0749-6419(01)00060-2
Google Scholar
[16]
L. Geng, Y. Shen, R. H. Wagoner, Anisotropic hardening equations derived from reverse-bend testing, Int. J. Plast. 18 (2002) 743–767.
DOI: 10.1016/s0749-6419(01)00048-1
Google Scholar
[17]
P. J. Armstrong, C. O. Frederick, A Mathematical representation of the multi-axial Bauschinger effect, Central Electricity Generating Board Report, Berkeley Nuclear Laboratories, RD/B/N731 1966.
Google Scholar
[18]
L. Geng, R. H. Wagoner, Role of plastic anisotropy and its evolution on springback, Int. J. Mech. Sci. 44 (2002) 123–148.
DOI: 10.1016/s0020-7403(01)00085-6
Google Scholar
[19]
K. Chung, M. G. Lee, D. Kim, C. Kim, M. L. Wenner, F. Barlat, Springback evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions, Part I: theory and formulation, Int. J. Plast. 21 (2005) 861–882.
DOI: 10.1016/s0749-6419(04)00088-9
Google Scholar
[20]
M. G. Lee, D. Kim, C. Kim, M. L. Wenner, R. H. Wagoner, K. Chung, Springback evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions Part II: characterization of material properties, Int. J. Plast. 21 (2005a) 883–914.
DOI: 10.1016/s0749-6419(04)00089-0
Google Scholar
[21]
M. G. Lee, D. Kim, C. Kim, M. L. Wenner, K. Chung, Springback evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions Part III: applications, Int. J. Plast. 21 (2005b) 915–953.
DOI: 10.1016/j.ijplas.2004.05.014
Google Scholar
[22]
R. P. R. Cardoso, J. W. Yoon, Stress integration method for a nonlinear kinematic/isotropic hardening model and its characterization based on polycrystalline plasticity, Int. J. Plast. 25 (2009) 1684–1710.
DOI: 10.1016/j.ijplas.2008.09.007
Google Scholar
[23]
Y. F. Dafalias and E. P. Popov, Plastic internal variables formalism of cyclic plasticity, J. Appl. Mech. 98 (1976) 645-651.
DOI: 10.1115/1.3423948
Google Scholar
[24]
M. Zampaloni, N. Abedrabbo, F. Pourboghrat, Experimental and numerical study of stamp hydro forming of sheet metals, Int. J. Mech. Sci. 45 (2003) 1815–1848.
DOI: 10.1016/j.ijmecsci.2003.11.006
Google Scholar
[25]
J. B. Kim, J. W. Yoon, D. Y. Yang, Investigation into the wrinkling behavior of thin sheets in the cylindrical cup deep drawing process using bifurcation theory, Int. Num. Meth. Eng. 56 (2003)1673–1705.
DOI: 10.1002/nme.629
Google Scholar
[26]
J. W. Yoon, F. Barlat, R. E. Dick, M. E. Karabin, Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function, Int. J. Plast. 22 (2006) 174–193.
DOI: 10.1016/j.ijplas.2005.03.013
Google Scholar
[27]
M. C. Oliveira, J. L. Alves, B. M. Chaparro, L. F. Menezes, Study on the influence of work-hardening modeling in springback prediction, Int. J. Plast. 23 (2007) 516–543.
DOI: 10.1016/j.ijplas.2006.07.003
Google Scholar
[28]
N. Ivaylo Vladimirov, Michael P. Pietryga, Stefanie Reese, Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming, Int. J. Plast. 26 (2010) 659–687.
DOI: 10.1016/j.ijplas.2009.09.008
Google Scholar
[29]
Junehyung Kim, Wonoh Lee, Daeyong Kim, Jinhak Kong, Chongmin Kim, Michael. L. Wenner, and Kwansoo Chung, Effect of hardening laws and yield function types on springback simulations of dual-phase steel automotive sheets, Metals and Materials International 12 (2006) 293–305.
DOI: 10.1007/bf03027546
Google Scholar
[30]
P. A. Eggertsen, K. Mattiasson, On the modeling of the bending–unbending behavior for accurate springback predictions, Int. J. Mech. Sci. 51 (2009) 547–563.
DOI: 10.1016/j.ijmecsci.2009.05.007
Google Scholar
[31]
Bingtao Tang, Xiaoyang Lu, Zhaoqing Wang, Zhen Zhao, Springback investigation of anisotropic aluminum alloy sheet with a mixed hardening rule and Barlat yield criteria in sheet metal forming, Mater. and Des. 31 (2010) 2043–2050.
DOI: 10.1016/j.matdes.2009.10.017
Google Scholar
[32]
Aboozar Taherizadeh, Daniel E. Green, Abbas Ghaei, Jeong-Whan Yoon, A non-associated constitutive model with mixed isotropic-kinematic hardening for finite element simulation of sheet metal forming, Int. J. Plast. 26 (2010) 288–309.
DOI: 10.1016/j.ijplas.2009.07.003
Google Scholar
[33]
M. Ucan, Effect of Constitutive Modeling in Sheet Metal Forming, M.Sc. Thesis, Middle East Technical University, Ankara, Turkey 2011.
Google Scholar
[34]
William F. Hosford, Mechanical Behavior of Materials, Cambridge, 2005.
Google Scholar
[35]
S. Neto, D. Peric, Drj Owen, Computational Methods for Plasticity, Theory and Applications, Willey, 2008.
Google Scholar