Transversely Isotropic Hyperelastic Constitutive Models for Plastic Thermoforming Simulation

Article Preview

Abstract:

For several years, modeling hyperelasticity has been focused on and leaded to a large choice of strain energy potential forms. Since then, many advances have been made in constitutive modeling of rubber like materials. These models are nowadays widely used in many applications like constitutive modeling of soft tissues in biomechanics problems or plastic thermoforming simulation. In this work, constitutive modeling of TPO sheets for thermoforming application is considered. Experimental measurements have shown that the material is transversely isotropic. To take into account this anisotropy, we implemented some new transversally isotropic hyperelastic constitutive models in Abaqus software with the help of user subroutines. Furthermore, different particular forms of the strain energy potential are investigated and their hyperelatic constants are fitted to the measurement data from tensile tests performed in different directions. Based on the results of these investigations, a transversely isotropic form of the energy potential derived from the Yeoh constitutive model is adopted and several tests are analyzed for validation purpose. The chosen model is a good compromise that achieves accurate predictions with limited amount of tests and limited identification efforts. Another key finding of this work is the influence of the anisotropy on the thermoformed parts.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

1715-1728

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Mooney, A theory of large elastic deformation. J. Appl. Phys. 11 (1940) 582-592.

Google Scholar

[2] R.W. Ogden. Large deformation isotropic elasticity - on the correlation of theories and experiment for uncompressible rubberlike solids. Proc. R. Soc. A. 326 (1940) 565-584.

DOI: 10.1098/rspa.1972.0026

Google Scholar

[3] R.W. Ogden. Non-linear elastic deformations. Wiley & Sons, New York, 1984.

Google Scholar

[4] L. R. G. Treloar. The mechanics of rubber elasticity, Proc. R. Soc. Lond. A.351 (1976), 301-330.

Google Scholar

[5] R.S. Rivlin, D.W Saunders. Large elastic deformations of isotropic materials. Experiments on the deformation of rubber. Phil. Trans. R. Soc. 243 (1951) 251-288.

DOI: 10.1098/rsta.1951.0004

Google Scholar

[6] R.S. Rivlin. Large elastic deformations, Rheology-Theory and applications. 1 (1956) 351-385.

DOI: 10.1016/b978-0-12-395694-1.50016-6

Google Scholar

[7] E.M. Arruda, M.C. Boyce. A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids. 42, n° 2 (1993) 389-412.

DOI: 10.1016/0022-5096(93)90013-6

Google Scholar

[8] C.J. Chuong, Y.C. Fung. Three-dimensional stress distribution in arteries. ASME J. Biomech. Eng. 105, (1983) 268–274.

DOI: 10.1115/1.3138417

Google Scholar

[9] G.A. Holzapfel, R. Eberlein, P. Wriggers, H.W Weizsacker. Large strain analysis of soft biological membranes: formulation and finite element analysis. Comput. Method. Appl. M. 1996.

DOI: 10.1016/0045-7825(96)00999-1

Google Scholar

[10] G.A. holzapfel, T.C. gasser, R.W ogden. A new constitutive framework for arterial wall mechanics and comparative study of material models. J. Elasticity. 61 (2000) 1-48.

DOI: 10.1007/0-306-48389-0_1

Google Scholar

[11] X.Q. Peng, Z.Y. Guo, B. Moran. An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Shear Interaction for the Human Annulus Fibrosus. J. Appl. M. 73 (2006) 815.

DOI: 10.1115/1.2069987

Google Scholar

[12] J.M. Ball. Convexity conditions and existence theorems in non linear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337-403

DOI: 10.1007/bf00279992

Google Scholar

[13] S. Hartmann, P. Neff. Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids. Struct. 40 (2003) 2768-2791.

DOI: 10.1016/s0020-7683(03)00086-6

Google Scholar

[14] Schröder J., NEFF P. Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids. Struc. 40 (2003) 401-445.

DOI: 10.1016/s0020-7683(02)00458-4

Google Scholar

[15] J.A. Weiss, B.N. Maker, S. Govindjee Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Method. Appl. M. 135 (1996) 107-128.

DOI: 10.1016/0045-7825(96)01035-3

Google Scholar

[16] S. K. Kyriacou, C. Schwab and J. D. Humphrey, Finite element analysis of nonlinear orthotropic hyperelastic membranes. Comput. Mech. 18 (1996) 269-278.

DOI: 10.1007/bf00364142

Google Scholar

[17] A.J. Burton, J. Bonet. A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations, Comput. Method. Appl. M. 162 (1998) 151-164.

DOI: 10.1016/s0045-7825(97)00339-3

Google Scholar

[18] F. Erchiqui, A. Bendada, A. Gakwaya, Analysis of Long Fibers Direction of Transversely Isotropic Hyperelastic Material for Thermoforming Application J. Reinf. Plast. Compos. 24 no.9 (2005).

DOI: 10.1177/0731684405048196

Google Scholar

[19] N. Chevaugeon, E. Verron, B. Peseux, Finite element analysis of nonlinear transversely isotropic hyperelastic membranes for thermoforming applications. ECCOMAS, 2000.

Google Scholar

[20] M. Itskov, A generalized orthotropic hyperelastic material model with application to incompressible shells. Int. J. Solids. Struct. 41 (2004) 3833–3848.

Google Scholar

[21] M. Itskov, A.E. Ehret. Constitutive modeling of anisotropic hyperelastic materials by polyconvex strain energy functions. ESMC. 2006.

DOI: 10.1201/9781315140216-63

Google Scholar

[22] Y. Aimene. Approche hyperelastique pour la simulation des renforts fibreux en grandes transformation. INSA Lyon. 2007.

Google Scholar

[23] A. Charmettant. Approches hypésalstique pour la modélisation du comportement mécanique de préformes tissées de composites. INSA Lyon. 2011.

Google Scholar

[24] L.R.G. Treloar. Stress-strain data for Vulcanised rubber under various types of deformation.  Trans. Faraday Soc. 40 (1944) 59-70.

DOI: 10.1039/tf9444000059

Google Scholar

[25] S. Kawabata, Y. Yamashita, H. Ooyama, and S. Yoshida. Mechanism of Carbon-Black Reinforcement of Rubber Vulcanizate.  Rubber. Chem. Technol. 68, no.2 (1995) 311–329.

DOI: 10.5254/1.3538745

Google Scholar

[26] M. Kaliske, H. Rothert. On the Finite Element Implementation of Rubber-like Materials at Finite Strains. Eng. Comput. 14 no.2 (1997) 216–232.

DOI: 10.1108/02644409710166190

Google Scholar

[27] O.H. Yeoh. Some forms of the strain energy function for rubber. Rubber. Chem. Technol. 66 (1993) 754-771.

DOI: 10.5254/1.3538343

Google Scholar