[1]
M. Mooney, A theory of large elastic deformation. J. Appl. Phys. 11 (1940) 582-592.
Google Scholar
[2]
R.W. Ogden. Large deformation isotropic elasticity - on the correlation of theories and experiment for uncompressible rubberlike solids. Proc. R. Soc. A. 326 (1940) 565-584.
DOI: 10.1098/rspa.1972.0026
Google Scholar
[3]
R.W. Ogden. Non-linear elastic deformations. Wiley & Sons, New York, 1984.
Google Scholar
[4]
L. R. G. Treloar. The mechanics of rubber elasticity, Proc. R. Soc. Lond. A.351 (1976), 301-330.
Google Scholar
[5]
R.S. Rivlin, D.W Saunders. Large elastic deformations of isotropic materials. Experiments on the deformation of rubber. Phil. Trans. R. Soc. 243 (1951) 251-288.
DOI: 10.1098/rsta.1951.0004
Google Scholar
[6]
R.S. Rivlin. Large elastic deformations, Rheology-Theory and applications. 1 (1956) 351-385.
DOI: 10.1016/b978-0-12-395694-1.50016-6
Google Scholar
[7]
E.M. Arruda, M.C. Boyce. A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids. 42, n° 2 (1993) 389-412.
DOI: 10.1016/0022-5096(93)90013-6
Google Scholar
[8]
C.J. Chuong, Y.C. Fung. Three-dimensional stress distribution in arteries. ASME J. Biomech. Eng. 105, (1983) 268–274.
DOI: 10.1115/1.3138417
Google Scholar
[9]
G.A. Holzapfel, R. Eberlein, P. Wriggers, H.W Weizsacker. Large strain analysis of soft biological membranes: formulation and finite element analysis. Comput. Method. Appl. M. 1996.
DOI: 10.1016/0045-7825(96)00999-1
Google Scholar
[10]
G.A. holzapfel, T.C. gasser, R.W ogden. A new constitutive framework for arterial wall mechanics and comparative study of material models. J. Elasticity. 61 (2000) 1-48.
DOI: 10.1007/0-306-48389-0_1
Google Scholar
[11]
X.Q. Peng, Z.Y. Guo, B. Moran. An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Shear Interaction for the Human Annulus Fibrosus. J. Appl. M. 73 (2006) 815.
DOI: 10.1115/1.2069987
Google Scholar
[12]
J.M. Ball. Convexity conditions and existence theorems in non linear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337-403
DOI: 10.1007/bf00279992
Google Scholar
[13]
S. Hartmann, P. Neff. Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids. Struct. 40 (2003) 2768-2791.
DOI: 10.1016/s0020-7683(03)00086-6
Google Scholar
[14]
Schröder J., NEFF P. Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids. Struc. 40 (2003) 401-445.
DOI: 10.1016/s0020-7683(02)00458-4
Google Scholar
[15]
J.A. Weiss, B.N. Maker, S. Govindjee Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Method. Appl. M. 135 (1996) 107-128.
DOI: 10.1016/0045-7825(96)01035-3
Google Scholar
[16]
S. K. Kyriacou, C. Schwab and J. D. Humphrey, Finite element analysis of nonlinear orthotropic hyperelastic membranes. Comput. Mech. 18 (1996) 269-278.
DOI: 10.1007/bf00364142
Google Scholar
[17]
A.J. Burton, J. Bonet. A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations, Comput. Method. Appl. M. 162 (1998) 151-164.
DOI: 10.1016/s0045-7825(97)00339-3
Google Scholar
[18]
F. Erchiqui, A. Bendada, A. Gakwaya, Analysis of Long Fibers Direction of Transversely Isotropic Hyperelastic Material for Thermoforming Application J. Reinf. Plast. Compos. 24 no.9 (2005).
DOI: 10.1177/0731684405048196
Google Scholar
[19]
N. Chevaugeon, E. Verron, B. Peseux, Finite element analysis of nonlinear transversely isotropic hyperelastic membranes for thermoforming applications. ECCOMAS, 2000.
Google Scholar
[20]
M. Itskov, A generalized orthotropic hyperelastic material model with application to incompressible shells. Int. J. Solids. Struct. 41 (2004) 3833–3848.
Google Scholar
[21]
M. Itskov, A.E. Ehret. Constitutive modeling of anisotropic hyperelastic materials by polyconvex strain energy functions. ESMC. 2006.
DOI: 10.1201/9781315140216-63
Google Scholar
[22]
Y. Aimene. Approche hyperelastique pour la simulation des renforts fibreux en grandes transformation. INSA Lyon. 2007.
Google Scholar
[23]
A. Charmettant. Approches hypésalstique pour la modélisation du comportement mécanique de préformes tissées de composites. INSA Lyon. 2011.
Google Scholar
[24]
L.R.G. Treloar. Stress-strain data for Vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40 (1944) 59-70.
DOI: 10.1039/tf9444000059
Google Scholar
[25]
S. Kawabata, Y. Yamashita, H. Ooyama, and S. Yoshida. Mechanism of Carbon-Black Reinforcement of Rubber Vulcanizate. Rubber. Chem. Technol. 68, no.2 (1995) 311–329.
DOI: 10.5254/1.3538745
Google Scholar
[26]
M. Kaliske, H. Rothert. On the Finite Element Implementation of Rubber-like Materials at Finite Strains. Eng. Comput. 14 no.2 (1997) 216–232.
DOI: 10.1108/02644409710166190
Google Scholar
[27]
O.H. Yeoh. Some forms of the strain energy function for rubber. Rubber. Chem. Technol. 66 (1993) 754-771.
DOI: 10.5254/1.3538343
Google Scholar