Morphology-Crystallinity Relationship in PLA-PHBV Blends Prepared via Extrusion

Article Preview

Abstract:

Poly(lactic acid) (PLA) is a biodegradable thermoplastic polyester derived from renewable resources which may replace conventional polymers for some applications. To overcome some of its limitations such as poor gas barrier properties and low elongation at break, one method is to blend PLA with small amounts of other bio-based polymers. In this study, two processes, eg classical twin screw extrusion and a multilayer co-extrusion process have been used to combine PLA and poly(3-hydroxybutyrate-co-3-valerate) PHBV to obtain films with different blend morphologies. The effect of the morphology on the crystallinity has been studied and has hightlightned new behavior of PHBV. The addition of a nucleating agent in the PHBV to modify its crystallinity, has also been studied.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

1707-1714

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Anderson, K. S.; Schreck, K. M.; Hillmyer, M. A. Toughening Polylactide, Polymer Reviews 2008, 48, (1), 85-108.

DOI: 10.1080/15583720701834216

Google Scholar

[2] Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials, Macromolecular Bioscience 2004, 4, (9), 835-864.

DOI: 10.1002/mabi.200400043

Google Scholar

[3] Garlotta, D. A Literature Review of Poly(Lactic Acid), Journal of Polymers and the Environment 2001, 9, (2), 63-84.

Google Scholar

[4] Lim, L. T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid), Progress in Polymer Science 2008, 33, (8), 820-852.

DOI: 10.1016/j.progpolymsci.2008.05.004

Google Scholar

[5] Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(lactic acid) modifications, Progress in Polymer Science 2010, 35, (3), 338-356.

DOI: 10.1016/j.progpolymsci.2009.12.003

Google Scholar

[6] Corre, Y.-M.; Bruzaud, S. p.; Audic, J.-L.; Grohens, Y. Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study, Polymer Testing 2012, 31, (2), 226-235.

DOI: 10.1016/j.polymertesting.2011.11.002

Google Scholar

[7] Khanna, S.; Srivastava, A. K. Recent advances in microbial polyhydroxyalkanoates, Process Biochemistry 2005, 40, (2), 607-619.

DOI: 10.1016/j.procbio.2004.01.053

Google Scholar

[8] Modi, S.; Koelling, K.; Vodovotz, Y. Assessment of PHB with varying hydroxyvalerate content for potential packaging applications, European Polymer Journal 2011, 47, (2), 179-186.

DOI: 10.1016/j.eurpolymj.2010.11.010

Google Scholar

[9] Noda, I.; Satkowski, M. M.; Dowrey, A. E.; Marcott, C. Polymer Alloys of Nodax Copolymers and Poly(lactic acid), Macromolecular Bioscience 2004, 4, (3), 269-275.

DOI: 10.1002/mabi.200300093

Google Scholar

[10] Zhang, M.; Thomas, N. L. Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties, Advances in Polymer Technology 2011, 30, (2), 67-79.

DOI: 10.1002/adv.20235

Google Scholar

[11] Nanda, M. R.; Misra, M.; Mohanty, A. K. The Effects of Process Engineering on the Performance of PLA and PHBV Blends, Macromolecular Materials and Engineering 2011, 296, (8), 719-728.

DOI: 10.1002/mame.201000417

Google Scholar

[12] Gerard, T.; Budtova, T. PLA-PHA Blends: Morphology, Thermal and Mechanical Properties, European Polymer Journal 2012, 48, 1110-1117.

Google Scholar

[13] Boufarguine, M.; Guinault, A.; Miquelard-Garnier, G.; Sollogoub, C. PLA/PHBV Films with Improved Mechanical and Gas Barrier Properties, Macromolecular Materials and Engineering 2012.

DOI: 10.1002/mame.201200285

Google Scholar

[14] Guinault, A.; Nguyen, A. S.; Miquelard-Garnier, G.; Jouannet, D.; Grandmontagne, A.; Sollogoub, C. The Effect of Thermoforming of PLA-PHBV Films on the Morphology and Gas Barrier Properties, Key Engineering Materials 2012, 504 - 506, 1135-1138.

DOI: 10.4028/www.scientific.net/kem.504-506.1135

Google Scholar

[15] Liu, W. J.; Yang, H. L.; Wang, Z.; Dong, L. S.; Liu, J. J. Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), Journal of Applied Polymer Science 2002, 86, (9), 2145-2152.

DOI: 10.1002/app.11023

Google Scholar

[16] Puente, J. A. S.; Esposito, A.; Chivrac, F.; Dargent, E. Effect of boron nitride as a nucleating agent on the crystallization of bacterial poly(3-hydroxybutyrate), Journal of Applied Polymer Science 2012, n/a-n/a.

DOI: 10.1002/app.38182

Google Scholar

[17] Li, Y.; Wu, H.; Wang, Y.; Liu, L.; Han, L.; Wu, J.; Xiang, F. Synergistic effects of PEG and MWCNTs on crystallization behavior of PLLA, Journal of Polymer Science Part B: Polymer Physics 2010, 48, (5), 520-528.

DOI: 10.1002/polb.21917

Google Scholar

[18] Javadi, A.; Srithep, Y.; Pilla, S.; Clemons, C. C.; Gong, S.; Turng, L.-S. Microcellular Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)-Hyperbranched Polymer-Nanoclay Nanocomposites, Polymer Engineering & Science 2011, 51, (9), 1815-1826.

DOI: 10.1002/pen.21972

Google Scholar

[19] Baer, E.; Kerns, J.; Hiltner, A., Processing and properties of polymer microlayered systems. In Structure Development during Polymer Processing, Cunha, A. M.; Fakirov, S., Eds. Springer: Dordrecht, 2000; Vol. 370, pp.327-344.

DOI: 10.1007/978-94-011-4138-3_16

Google Scholar

[20] Sollogoub, C.; Grandmontagne, A.; Guinault, A., Instabilities in a Layer-Multiplying Device. In International Conference on Advances in Materials and Processing Technologies, Pts One and Two, Chinesta, F.; Chastel, Y.; ElMansori, M., Eds. Amer Inst Physics: Melville, 2010; Vol. 1315, pp.1267-1272.

DOI: 10.1063/1.3552358

Google Scholar

[21] Scandola, M.; Focarete, M. L.; Adamus, G.; Sikorska, W.; Baranowska, I.; Swierczek, S.; Gnatowski, M.; Kowalczuk, M.; Jedlinski, Z. Polymer Blends of Natural Poly(3-hydroxybutyrate-co-3-hydro-xyvalerate) and a Synthetic Atactic Poly(3-hydroxybutyrate). Characterization and Biodegradation Studies, Macromolecules 1997, 30, (9), 2568-2574.

DOI: 10.1021/ma961431y

Google Scholar