Applying Nagata Patches in the Description of Smooth Tool Surfaces Used in Sheet Metal Forming Simulations

Article Preview

Abstract:

This study deals with the new strategy currently implemented in DD3IMP in-house code to describe the forming tools using Nagata patches. The strategy is based on the use of the Nagata patch interpolation to generate smooth contact surfaces over coarse faceted finite element meshes. The description of the adopted algorithm is briefly presented, highlighting the contact search algorithm employed. The reverse deep drawing of cylindrical cups, proposed as benchmark at the Numisheet’99 conference, is selected to examine the accuracy and robustness of the proposed approach. The effect of the gap between the blank-holder and the die is studied, adopting two distinct strategies: fixed gap and variable gap. The numerical results are compared with the experimental ones, previously presented and discussed in [1]. It is shown that the agreement is very good both in terms of punch force evolution and thickness distribution.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

2277-2284

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Thuillier, P.Y. Manach, L.F. Menezes, M.C. Oliveira, Experimental and numerical study of reverse re-drawing of anisotropic sheet metals, J. Mater. Process. Technol. 125-126 (2002) 764-771.

DOI: 10.1016/s0924-0136(02)00387-4

Google Scholar

[2] A. Makinouchi, Sheet metal forming simulation in industry, J. Mater. Process. Technol. 60 (1996) 19-26.

Google Scholar

[3] L.F. Menezes, C. Teodosiu, Three-dimensional numerical simulation of the deep-drawing process using solid finite elements, J. Mater. Process. Technol. 97 (2000) 100-106.

DOI: 10.1016/s0924-0136(99)00345-3

Google Scholar

[4] L.F. Menezes, D.M. Neto, M.C. Oliveira, J.L. Alves, Improving Computational Performance through HPC Techniques: case study using DD3IMP in‐house code, AIP Conf. Proc. 1353 (2011) 1220-1225.

DOI: 10.1063/1.3589683

Google Scholar

[5] A. Santos, A. Makinouchi, Contact strategies to deal with different tool descriptions in static explicit FEM of 3-D sheet-metal forming simulation, J. Mater. Process. Tech. 50 (1995) 277-291.

DOI: 10.1016/0924-0136(94)01391-d

Google Scholar

[6] D.M. Neto, M.C. Oliveira, L.F. Menezes, J.L. Alves, Improving Nagata patch interpolation applied for tool surface description in sheet metal forming simulation, Comput.-Aided Des. 45 (2013) 639-656.

DOI: 10.1016/j.cad.2012.10.046

Google Scholar

[7] D.M. Neto, M.C. Oliveira, L.F. Menezes, J.L. Alves, Applying Nagata patches to smooth discretized surfaces used in 3D frictional contact problems: submitted to Comput. Method Appl. Mech. Eng. (2013).

DOI: 10.1016/j.cma.2013.12.008

Google Scholar

[8] T. Nagata, Simple local interpolation of surfaces using normal vectors, Comput. Aided Geom. Des. 22 (2005) 327-347.

DOI: 10.1016/j.cagd.2005.01.004

Google Scholar

[9] V. Padmanabhan, T.A. Laursen, A framework for development of surface smoothing procedures in large deformation frictional contact analysis, Finite Elem. Anal. Des. 37 (2001) 173-198.

DOI: 10.1016/s0168-874x(00)00029-9

Google Scholar

[10] Numisheet 1999, Benchmark C reverse deep drawing of a cylindrical cup, in: J.C. Gelin, P. Picard (Eds.), Numisheet'99 - The 4th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Besançon, 1999, pp.871-932.

DOI: 10.1088/1742-6596/734/1/011001

Google Scholar

[11] J. Danckert, K.B. Nielsen, P. Hojbjerg, Experimental investigation of Numisheet'99 benchmark test C, in: J.C. Gelin, P. Picart (Eds.), Numisheet'99 - The 4th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Besançon, France, 1999, pp.637-642.

DOI: 10.1088/1742-6596/734/1/011001

Google Scholar

[12] T. Hama, T. Nagata, C. Teodosiu, A. Makinouchi, H. Takuda, Finite-element simulation of springback in sheet metal forming using local interpolation for tool surfaces, Int. J. Mech. Sci. 50 (2008) 175-192.

DOI: 10.1016/j.ijmecsci.2007.07.005

Google Scholar

[13] D.M. Neto, M.C. Oliveira, L.F. Menezes, J.L. Alves, Nagata patch interpolation using surface normal vectors evaluated from the IGES file: submitted to Finite Elem. Anal. Des. (2012).

DOI: 10.1016/j.finel.2013.03.004

Google Scholar

[14] J.O. Hallquist, G.L. Goudreau, D.J. Benson, Sliding interfaces with contact-impact in large-scale Lagrangian computations, Comput. Methods Appl. Mech. Eng. 51 (1985) 107-137.

DOI: 10.1016/0045-7825(85)90030-1

Google Scholar

[15] S.K. Esche, M.A. Ahmetoglu, G.L. Kinzel, T. Altan, Numerical and experimental investigation of redrawing of sheet metals, J. Mater. Process. Technol. 98 (2000) 17-24.

DOI: 10.1016/s0924-0136(99)00301-5

Google Scholar

[16] D.K. Min, B.H. Jeon, H.J. Kim, N. Kim, A study on process improvements of multi-stage deep-drawing by the finite element method, J. Mater. Process. Technol. 54 (1995) 230-238.

DOI: 10.1016/0924-0136(94)01775-1

Google Scholar

[17] S. Thuillier, P.Y. Manach, L.F. Menezes, Occurrence of strain path changes in a two-stage deep drawing process, J. Mater. Process. Technol. 210 (2010) 226-232.

DOI: 10.1016/j.jmatprotec.2009.09.004

Google Scholar

[18] J.W. Yoon, F. Barlat, R.E. Dick, K. Chung, T.J. Kang, Plane stress yield function for aluminum alloy sheets-part II: FE formulation and its implementation, Int. J. Plast. 20 (2004) 495-522.

DOI: 10.1016/s0749-6419(03)00099-8

Google Scholar