Microstructure Analysis of High-Manganese TWIP Steels Produced via Strip Casting

Article Preview

Abstract:

Steels with manganese contents of more than 20% offer a new and favourable combination of material properties like high strength and high ductility. These extraordinary mechanical properties are based on the TWIP effect, which depends on the Stacking Fault Energy (SFE). But there are still problems in the conventional production of high-manganese steels, which prevents their widespread use. Both in casting and subsequent hot rolling difficulties occur, with the consequence that the production is very expensive. One alternative production process of high-manganese steels is strip casting, which basic feasibility was shown in earlier work. Strip casting allows the casting and rolling of hot strip in one combined process. In this way hot strip with a thickness of less than 3 mm could be produced. Characteristic for the strip cast material is the as-cast structure with a fine dendritic structure, which shows pronounced microsegregations with a short wavelength. The pronounced microsegregations can have an impact on the local chemical composition and thus on the dominating forming mechanisms that occur. In this work therefore the microsegregations of strip cast material are investigated by means of electron probe microanalysis (EPMA) measurement. Besides the local element distribution, also the presence and composition of non-metallic inclusions are analysed. Especially oxides from the casting process and sulfides from the raw material are expected. Furthermore, different annealing processes for the elimination of the dendritic as-cast structure are examined. In these experiments the temperatures were varied in the range from 900 to 1150°C at annealing times from several minutes to a few hours.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

553-561

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Hofmann, J.-U. Becker, S. Göklü, H. Richter, I. Thomas, X-IP 1000: Properties of an austenitic super high strength high manganese steel - status and outlook, Proceedings of the SCT 2008, Wiesbaden, Germany, June 1-4, 2008.

Google Scholar

[2] I. Gutierrez-Urrutia, D. Raabe, Grain size effect on strain hardening in twinning-induced plasticity steels, Scripta Materialia 66 (2012) 992-996.

DOI: 10.1016/j.scriptamat.2012.01.037

Google Scholar

[3] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Current Opinion in Solid State and Materials Science 15 (2011) 141-168.

DOI: 10.1016/j.cossms.2011.04.002

Google Scholar

[4] I. Gutierrez-Urrutia, D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging, Acta Materialia 59 (2011) 6449-6462.

DOI: 10.1016/j.actamat.2011.07.009

Google Scholar

[5] S.J. Lee, J. Kim, S.N. Kane, B.C. De Cooman, On the origin of dynamic strain aging in twinning-induced plasticity steels, Acta Materialia 59 (2011) 6809-6819.

DOI: 10.1016/j.actamat.2011.07.040

Google Scholar

[6] L. Chen, H.-S. Kim, S.-K. Kim, B.C. De Cooman, Localized Deformation due to Portevin–LeChatelier Effect in 18Mn–0.6C TWIP Austenitic Steel, ISIJ International 47 (2007) 1804-1812.

DOI: 10.2355/isijinternational.47.1804

Google Scholar

[7] D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions, Material Science and Engineering A, 500 (2009), 196-206.

DOI: 10.1016/j.msea.2008.09.031

Google Scholar

[8] B. X. Huang, X. D. Wang, Y. H. Rong, L. Wang, L. Jin, Mechanical behavior and martensitic transformation of an Fe–Mn–Si–Al–Nb alloy, Material Science and Engineering A, 438-440 (2006), 306-311.

DOI: 10.1016/j.msea.2006.02.150

Google Scholar

[9] J.-E. Jin, Y.-K. Lee, Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel, Acta Materialia 60 (2012) 1680–1688.

DOI: 10.1016/j.actamat.2011.12.004

Google Scholar

[10] O. Bouaziz, Strain-hardening of twinning-induced plasticity steels, Scripta Materialia 66 (2011) 982-985.

DOI: 10.1016/j.scriptamat.2011.11.029

Google Scholar

[11] G. Gigacher, C. Bernhard, D. I. W. Kriegner, Eigenschaften hochmanganhaltiger Stähle unter stranggießähnlichen Bedingungen, BHM, Berg- und Hüttenmännische Monatshefte 149 (2004) 112-117.

Google Scholar

[12] Mark Schlichting, J. Ondrovic, P. Woodberry, D. Michael, Energy and environmental advantages with the Castrip process, Stahl und Eisen 129 (2009) 44-51.

Google Scholar

[13] N. Zapuskalov, Comparison of continuous strip casting with conventional technology, ISIJ International 43 (2003) 1115-1127.

DOI: 10.2355/isijinternational.43.1115

Google Scholar

[14] S. H. Wang, Z. Y. Liu, W. N. Zhang, G.H. Wang, J. L. Liu, G.F. Liang, Microstructure and Mechanical Property of Strip in Fe-23Mn-3Si-3Al TWIP Steel by Twin Roll Casting, ISIJ International 49 (2009) 1340-1346.

DOI: 10.2355/isijinternational.49.1340

Google Scholar

[15] Z. Y. Liu, Z. S. Lin, S. H. Wang, Y. Q. Qiu, X. H. Liu, G. D. Wang, Microstructure characterization of austenitic Fe-25Mn-22Cr-2Si-0.7N alloy processed by twin roll strip casting, Materials Characterization 58 (2007) 974 -919.

DOI: 10.1016/j.matchar.2006.10.005

Google Scholar

[16] Information on http://www.salzgitter-ag.com/en/Presse/Pressearchiv/2010/

Google Scholar

[17] T. J. Baker, J. A. Charles, Effect of Second-Phase Particles on the Mechanical Properties of Steel, M. J. May, ed., The Iron and Steel Institute, Scarborough (1971) 88-94.

Google Scholar

[18] L. Zhang, B. G. Thomas, State of the Art in the Control of Inclusions during Steel Ingot Casting, Metallurgical and Materials Transactions B 37 (2006) 733-761.

DOI: 10.1007/s11663-006-0057-0

Google Scholar

[19] A. Saeed-Akbari, A. Schwedt, W. Bleck, Low stacking fault energy steels in the context of manganese-rich iron-based alloys, Scripta Materialia 66 (2012) 1024-1029.

DOI: 10.1016/j.scriptamat.2011.12.041

Google Scholar

[20] B. Wietbrock, M. Bambach, S. Seuren, G. Hirt, Homogenization strategy and material characterization of high-manganese TRIP and TWIP steels, Materials Science Forum 638-642 (2010) 3134–3139.

DOI: 10.4028/www.scientific.net/msf.638-642.3134

Google Scholar

[21] P. von Schweinichen, Z. Chen, D. Senk, A. Lob, Effect of different casting parameters on the cleanliness of highmanganese steel ingots compared to high carbon steel, Supplemental Proceedings: Volume 2: Materials Properties, Characterization, and Modeling TMS (2012) 193-200.

DOI: 10.1002/9781118357002.ch26

Google Scholar