[1]
N. Moës, J. Dolbow, T. Belytschko: A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46 (1999), 131-150.
DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j
Google Scholar
[2]
N. Sukumar, D.L. Chopp, N. Moës, T. Belytschko: Modeling holes and inclusions by level sets in the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 190 (2001), 6183-6200.
DOI: 10.1016/s0045-7825(01)00215-8
Google Scholar
[3]
S. Osher, J.A. Sethian: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations) Journal of computational physics, 79(1) (1988), 12-49.
DOI: 10.1016/0021-9991(88)90002-2
Google Scholar
[4]
E. Béchet, N. Moës, B. Wohlmuth: A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. International Journal for Numerical Methods in Engineering, 78 (2009), 931-954.
DOI: 10.1002/nme.2515
Google Scholar
[5]
E. Pierres, M.C. Baietto, A. Gravouil: A two-scale extended finite element method for modelling 3D crack growth with interfacial contact. Computer Methods in Applied Mechanics and Engineering, 199 (2010), 1165-1177.
DOI: 10.1016/j.cma.2009.12.006
Google Scholar
[6]
J. Donea, A. Huerta, J.P. Ponthot, A. Rodríguez-Ferran: Encyclopedia of Computational Mechanics - Arbitrary Lagrangian-Eulerian Methods. John Wiley & Sons, Ltd, 2004.
DOI: 10.1002/0470091355.ecm009
Google Scholar
[7]
Official website of Metafor : http://metafor.ltas.ulg.ac.be/dokuwiki
Google Scholar
[8]
J.P. Ponthot:Traitement unifié de la Mécanique des Milieux Continus solides en grandes transformations par la méthode des éléments finis. Doctoral Thesis,University of Liège, 1995.
DOI: 10.1080/12506559.2000.10511494
Google Scholar
[9]
T. Belytschko, W.K. Liu, B. Moran: Nonlinear finite elements for continua and structures. Wiley & Sons LtD New-York, 2000.
Google Scholar
[10]
S.E. Mousavi, N. Sukumar: Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 199 (2010), 3237-3249.
DOI: 10.1016/j.cma.2010.06.031
Google Scholar
[11]
N. Moës, M. Cloirec, P. Cartraud, and J. F. Remacle: A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 192 (2003) 3163-3177.
DOI: 10.1016/s0045-7825(03)00346-3
Google Scholar
[12]
P. Wriggers: Computational contact mechanics. Springer Berlin / Heidelberg, 2006.
Google Scholar
[13]
D.J. Benson: An efficient, accurate, simple ALE method for nonlinear finite element programs. Computer Methods in Applied Mechanics and Engineering, 72 (1989), 305-350.
DOI: 10.1016/0045-7825(89)90003-0
Google Scholar
[14]
R. Boman, J.P. Ponthot: Efficient ALE mesh management for 3D quasi-Eulerian problems International Journal for Numerical Methods in Engineering, 92 (2012), 857-890.
DOI: 10.1002/nme.4361
Google Scholar
[15]
L. Olovsson, L. Nilsson, K. Simonsson: An ALE formulation for the solution of two-dimensional metal cutting problems. Computer and Structures, 72 (1999) 497-507.
DOI: 10.1016/s0045-7949(98)00332-0
Google Scholar