Modeling Thixoforming Process Using the eXtended Finite Element Method and the Arbitrary Lagrangian Eulerian Formulation

Article Preview

Abstract:

This contribution proposes to model thixoforming processes using the eXtended Finite Element Method (X-FEM). The X-FEM is very suitable for modeling forming processes with complex tool geometries as the mesh does not need to conform with the boundary of the structure. Even if the use of the X-FEM helps to describe the boundary position, the mesh still deforms when the structure is stressed. To avoid mesh distortions that appear in large deformation analysis, an Arbitrary Lagrangian Eulerian formulation is used (ALE) [3].

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

691-698

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Moës, J. Dolbow, T. Belytschko: A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46 (1999), 131-150.

DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Google Scholar

[2] N. Sukumar, D.L. Chopp, N. Moës, T. Belytschko: Modeling holes and inclusions by level sets in the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 190 (2001), 6183-6200.

DOI: 10.1016/s0045-7825(01)00215-8

Google Scholar

[3] S. Osher, J.A. Sethian: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations) Journal of computational physics, 79(1) (1988), 12-49.

DOI: 10.1016/0021-9991(88)90002-2

Google Scholar

[4] E. Béchet, N. Moës, B. Wohlmuth: A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. International Journal for Numerical Methods in Engineering, 78 (2009), 931-954.

DOI: 10.1002/nme.2515

Google Scholar

[5] E. Pierres, M.C. Baietto, A. Gravouil: A two-scale extended finite element method for modelling 3D crack growth with interfacial contact. Computer Methods in Applied Mechanics and Engineering, 199 (2010), 1165-1177.

DOI: 10.1016/j.cma.2009.12.006

Google Scholar

[6] J. Donea, A. Huerta, J.P. Ponthot, A. Rodríguez-Ferran: Encyclopedia of Computational Mechanics - Arbitrary Lagrangian-Eulerian Methods. John Wiley & Sons, Ltd, 2004.

DOI: 10.1002/0470091355.ecm009

Google Scholar

[7] Official website of Metafor : http://metafor.ltas.ulg.ac.be/dokuwiki

Google Scholar

[8] J.P. Ponthot:Traitement unifié de la Mécanique des Milieux Continus solides en grandes transformations par la méthode des éléments finis. Doctoral Thesis,University of Liège, 1995.

DOI: 10.1080/12506559.2000.10511494

Google Scholar

[9] T. Belytschko, W.K. Liu, B. Moran: Nonlinear finite elements for continua and structures. Wiley & Sons LtD New-York, 2000.

Google Scholar

[10] S.E. Mousavi, N. Sukumar: Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 199 (2010), 3237-3249.

DOI: 10.1016/j.cma.2010.06.031

Google Scholar

[11] N. Moës, M. Cloirec, P. Cartraud, and J. F. Remacle: A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 192 (2003) 3163-3177.

DOI: 10.1016/s0045-7825(03)00346-3

Google Scholar

[12] P. Wriggers: Computational contact mechanics. Springer Berlin / Heidelberg, 2006.

Google Scholar

[13] D.J. Benson: An efficient, accurate, simple ALE method for nonlinear finite element programs. Computer Methods in Applied Mechanics and Engineering, 72 (1989), 305-350.

DOI: 10.1016/0045-7825(89)90003-0

Google Scholar

[14] R. Boman, J.P. Ponthot: Efficient ALE mesh management for 3D quasi-Eulerian problems International Journal for Numerical Methods in Engineering, 92 (2012), 857-890.

DOI: 10.1002/nme.4361

Google Scholar

[15] L. Olovsson, L. Nilsson, K. Simonsson: An ALE formulation for the solution of two-dimensional metal cutting problems. Computer and Structures, 72 (1999) 497-507.

DOI: 10.1016/s0045-7949(98)00332-0

Google Scholar