Towards Online Control of Forming Processes Involving Residual Stresses: Defining Multi-Parametric Computational vademecums

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

699-705

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Forcellese and F. Gabriella: Artificial neural-network-based control system for springback compensation in press-brake forming, Int. J. Materials and Product Technology 16 (2001), pp.545-563.

DOI: 10.1504/ijmpt.2001.001280

Google Scholar

[2] R. Teimouri, H. Baseri, B. Rahmani and M. Bakhshi-Jooybari: Modeling and optimization of spring-back in bending process using multiple regression analysis and intelligent computation, Int. J. Mater. Form.

DOI: 10.1007/s12289-012-1117-4

Google Scholar

[3] A. Ammar, B. Mokdad, F. Chinesta and R. Keunings: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of compex fluids. Part II: Transient simulation using space-time separated representation, J. NonNewtonian Fluid Mechanics 144 (2007), pp.98-121.

DOI: 10.1016/j.jnnfm.2007.03.009

Google Scholar

[4] E. Pruliere, F. Chinesta and A. Ammar: On the deterministic solution of multidimensional parametric models by using the Proper Generalized Decomposition, Mathematics and Computers in Simulation 81 (2010), pp.791-810.[5] F. Chinesta, P. Lavedeze and E. Cueto: A short review in Model Order Reduction based on Proper Generalized Decomposition, Archives of Computational Methods in Engineering, 18, 395-404, 2011.

DOI: 10.1016/j.matcom.2010.07.015

Google Scholar

[6] S. Chaturantabut and D.C. Sorensen: Nonlinear model order reduction via discrete empirical interpolation, SIAM J. Sci. Comput. 32 (2010), pp.2737-2764.

DOI: 10.1137/090766498

Google Scholar

[7] M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera: An "empirical interpolation" method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique 339/9 (2004), pp.667-672.

DOI: 10.1016/j.crma.2004.08.006

Google Scholar

[8] F. Chinesta, A. Leygue, F. Bordeu, J.V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar and A. Huerta: PGD-based computational vademecum for efficient design, optimization and control, Archives of Computational Methods in Engineering (2012), in press.

DOI: 10.1007/s11831-013-9080-x

Google Scholar

[9] Y. Mishing, in: Diffusion Processes in Advanced Technological Materials, edtied by D. Gupta Noyes Publications/William Andrew Publising, CityplaceNorwich, StateNY (2004), in press.

Google Scholar

[10] G. Henkelman, G.Johannesson and H. Jonsson, in: Theoretical Methods in Condencsed Phase Chemistry, edited by S.D. Schwartz, volume 5 of Progress in Theoretical Chemistry and Physics, chapter, 10, Kluwer Academic Publishers (2000).

Google Scholar

[11] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003)

Google Scholar

[12] P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. CityplaceAshley, country-regionU.S. Patent 6,231,666. (2001)

Google Scholar

[13] Information on http://www.weld.labs.gov.cn

Google Scholar