[1]
K. Roll, Simulation of Sheet Metal Forming – Necessary Developments in the Future; in: Proceedings of Numisheet 2008, 7th International Conference on Numerical Simulation of 3D Sheet Metal Forming Processes, Interlaken, 2008, Part A, pp.3-11
DOI: 10.1007/978-3-031-06212-4_63
Google Scholar
[2]
I. Burchitz, Improvement of Springback Prediction in Sheet Metal Forming, PhD-Thesis University of Twente, Rotterdam (2008)
Google Scholar
[3]
D. Banabic, Sheet Metal Forming Processes - Constitutive Modelling and Numerical Simulation, Springer, Heidelberg Dordrecht London New York, (2010)
Google Scholar
[4]
J. Filzek, M. Ludwig, P. Groche, Improved FEM Simulation of Sheet Metal Forming with Friction Modelling using Laboratory Tests, Proceedings of the IDDRG, Bilbao, Spain, (2011)
Google Scholar
[5]
D. K. Karupannasamy, J. Hol, M. B. de Rooij, T. Meinders, D.J. Schipper, Modelling mixed lubrication for deep drawing processes, in: Wear 294-295 (2012), 296-304
DOI: 10.1016/j.wear.2012.06.006
Google Scholar
[6]
A. Peter, Entwicklung eines Modells zur Abbildung der Reibverhältnisse beim Innenhochdruck-Umformen, in: Berichte aus Produktion und Umformtechnik, Vol. 61 (2004) Shaker Verlag
Google Scholar
[7]
J. Staeves, D. Schmoeckel, Topography of Sheet Metal and its Relationship to the Tribological Behaviour During the Forming Process, Proc. 1st International Conference on Tribology in Manufacturing Process, Gifu, Japan, (1997)
DOI: 10.1016/s0007-8506(07)60802-6
Google Scholar
[8]
R. Schäfer, Kontaktgebundene Oberflächenwandlung polykristalliner Blechoberflächen, in: Berichte aus Produktion und Umformtechnik, Vol. 76 (2008), Shaker Verlag
Google Scholar
[9]
J. Hol, M. V. Cid Alfaro, M. B. de Rooij, T. Meinders, Advanced friction modeling for sheet metal forming, in: Wear 286-287 (2012), 66-78
DOI: 10.1016/j.wear.2011.04.004
Google Scholar
[10]
L. Dubar, C. Hubert, P. Christiansen, N. Bay, A. Dubois, Analysis of fluid lubrication mechanisms in metal forming at mesoscopic scale, CIRP Annals – Manufacturing Technology 61 (2012) 271-274
DOI: 10.1016/j.cirp.2012.03.126
Google Scholar
[11]
H. R. Le, M. P. F. Sutcliffe, Evolution of Surface Pits on Stainless Steel Strip in Cold Rolling and Strip drawing, Transactions of the ASME, 125 (2003) 384-390
DOI: 10.1115/1.1504088
Google Scholar
[12]
D. Raabe, Einfluß der Rauheit metallischer Oberflächen auf Reibung und Rückfederung, Max-Planck Project Report, (2004)
Google Scholar
[13]
A. K. Sengupta, B. Fogg, S. K. Gish, On the Mechanism behind the Punch-Blank Surface Confirmation in Stretch-Forming and Deep Drawing, in: Journal of Mechanical Working Technology (1981), 181-210
DOI: 10.1016/0378-3804(81)90039-5
Google Scholar
[14]
S. Wagner, 3D-Beschreibung der Oberflächenstrukturen von Feinblechen, PhD-Thesis, Universität Stuttgart, Institut für Umformtechnik, (1996)
Google Scholar
[15]
J. A. Greenwood, J. B. P. Williamson, Contact of nominally flat surfaces, Int. J. Mach. Tool Des. Res. (1966), 300-319.
Google Scholar
[16]
C. B. Kaminsky, Numerische Modellierung der Oberflächenwandlung von Feinblechen, PhD-Thesis, Institut für Umformtechnik und Umformmaschinen, Universität Hannover, (1999)
Google Scholar
[17]
M. Ludwig, J. Stahlmann, P. Groche, Advanced Friction Model for Cold Forging Processes, in: Steel research journal (2012), pp.1003-1006
Google Scholar
[18]
J. Stahlmann, E. R. Nicodemus, S. C. Sharma, P. Groche, Surface roughness evolution in FEA simulations of bulk metal forming processes, in: Wear 288 (2012), 78-87
DOI: 10.1016/j.wear.2012.02.005
Google Scholar
[19]
R. Balbach, Optimierung der Oberflächenmikrogeometrie von Aluminiumfeinblech für das Karosserieziehen, PhD-Thesis, Institut für Umformtechnik, Universität Stuttgart, (1988)
DOI: 10.1007/978-3-642-83574-2
Google Scholar
[20]
P. Groche, R. Schäfer, H. Justinger, M. Ludwig, On the correlation between crytallographic grain size and surface evolution in metal forming processes, in: International Journal of Mechanical Sciences 52 (2010), 523-530
DOI: 10.1016/j.ijmecsci.2009.11.017
Google Scholar
[21]
I. Shimizu, J. L. Andreasen, J. I. Bech, N. Bay, Influence of workpiece surface topography on the mechanisms of liquid lubrication in strip drawing, in: Journal of tribology, Vol. 123, p.290 – 294, (2001)
DOI: 10.1115/1.1308017
Google Scholar
[22]
S.-W. Lo, W. R. D. Wilson, A theoretical model of micro-pool lubrication in metal forming, in: Journal of tribology, Vol. 121, p.731 – 738, (1999)
DOI: 10.1115/1.2834129
Google Scholar
[23]
A. Azushima, FEM analysis of hydrostatic pressure generated within lubricant entrapped into pocket on workpiece surface in upsetting process, in: Journal of tribology, Vol. 122, p.822 – 827, (2000)
DOI: 10.1115/1.1286160
Google Scholar
[24]
Kienzle Prozessanalytik, Manual LUBRIMINI, (2011)
Google Scholar
[25]
Nanofocus AG: µSurf – konfokale 3D-Topometrie Rauheit – Form – Schichtdicke. (2010)
Google Scholar
[26]
W. Dutschke, Grundlagen des Tiefziehens nicht rotationssymmetrischer prismatischer Teile, Dissertation, Technische Hochschule Stuttgart, (1957)
Google Scholar