Surface Evolution and Lubricant Distribution in Deep Drawing

Article Preview

Abstract:

Deep drawing is one of the most important processes applied in industrial production. Here the Finite-Element-Method (FEM) is an important tool in the development and optimization process. One aspect to optimize simulations is to consider real friction behavior. Thus the friction phenomenon has to be describable. In addition to contact normal pressure and velocity the surface topography and the lubricant amount have a great influence on friction. This paper illustrates the influence of surface evolution in real, inhomogeneous processes on the lubricant distribution. For this a rectangular cup with four different corner radii is used to evaluate local surface topographies and lubricant amounts in deep drawing. The lubricant amount is measured by fluorescence technique and the surface topography is evaluated by a confocal white-light microscope. Due to hydrodynamic effects the lubricant is squeezed out and displaced to adjacent regions. Further hydrostatic pressures built up in closed lubricant pockets force the lubricant to stay in the forming zone to bear a part of the load. In free forming zones without contact between the sheet and tool the surface roughens due to grain dislocations in the microstructure. This paper also presents the results of lubricant distribution and surface evolution by varying the initial lubricant amounts and drawing depth. It can be recognized that the different corner radii of the rectangle cup have a great influence on the surface evolution and lubricant distribution. Moreover it can be clearly seen that surface parameters correlate with the lubricant amount. By means of the described evaluation it is also possible to correlate these values with load histories consisting of contact pressures and strain evolution, evaluated in FEM. All the results contribute to a better understanding of the friction behavior in deep drawing and point out the inhomogeneous character of friction.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

811-824

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Roll, Simulation of Sheet Metal Forming – Necessary Developments in the Future; in: Proceedings of Numisheet 2008, 7th International Conference on Numerical Simulation of 3D Sheet Metal Forming Processes, Interlaken, 2008, Part A, pp.3-11

DOI: 10.1007/978-3-031-06212-4_63

Google Scholar

[2] I. Burchitz, Improvement of Springback Prediction in Sheet Metal Forming, PhD-Thesis University of Twente, Rotterdam (2008)

Google Scholar

[3] D. Banabic, Sheet Metal Forming Processes - Constitutive Modelling and Numerical Simulation, Springer, Heidelberg Dordrecht London New York, (2010)

Google Scholar

[4] J. Filzek, M. Ludwig, P. Groche, Improved FEM Simulation of Sheet Metal Forming with Friction Modelling using Laboratory Tests, Proceedings of the IDDRG, Bilbao, Spain, (2011)

Google Scholar

[5] D. K. Karupannasamy, J. Hol, M. B. de Rooij, T. Meinders, D.J. Schipper, Modelling mixed lubrication for deep drawing processes, in: Wear 294-295 (2012), 296-304

DOI: 10.1016/j.wear.2012.06.006

Google Scholar

[6] A. Peter, Entwicklung eines Modells zur Abbildung der Reibverhältnisse beim Innenhochdruck-Umformen, in: Berichte aus Produktion und Umformtechnik, Vol. 61 (2004) Shaker Verlag

Google Scholar

[7] J. Staeves, D. Schmoeckel, Topography of Sheet Metal and its Relationship to the Tribological Behaviour During the Forming Process, Proc. 1st International Conference on Tribology in Manufacturing Process, Gifu, Japan, (1997)

DOI: 10.1016/s0007-8506(07)60802-6

Google Scholar

[8] R. Schäfer, Kontaktgebundene Oberflächenwandlung polykristalliner Blechoberflächen, in: Berichte aus Produktion und Umformtechnik, Vol. 76 (2008), Shaker Verlag

Google Scholar

[9] J. Hol, M. V. Cid Alfaro, M. B. de Rooij, T. Meinders, Advanced friction modeling for sheet metal forming, in: Wear 286-287 (2012), 66-78

DOI: 10.1016/j.wear.2011.04.004

Google Scholar

[10] L. Dubar, C. Hubert, P. Christiansen, N. Bay, A. Dubois, Analysis of fluid lubrication mechanisms in metal forming at mesoscopic scale, CIRP Annals – Manufacturing Technology 61 (2012) 271-274

DOI: 10.1016/j.cirp.2012.03.126

Google Scholar

[11] H. R. Le, M. P. F. Sutcliffe, Evolution of Surface Pits on Stainless Steel Strip in Cold Rolling and Strip drawing, Transactions of the ASME, 125 (2003) 384-390

DOI: 10.1115/1.1504088

Google Scholar

[12] D. Raabe, Einfluß der Rauheit metallischer Oberflächen auf Reibung und Rückfederung, Max-Planck Project Report, (2004)

Google Scholar

[13] A. K. Sengupta, B. Fogg, S. K. Gish, On the Mechanism behind the Punch-Blank Surface Confirmation in Stretch-Forming and Deep Drawing, in: Journal of Mechanical Working Technology (1981), 181-210

DOI: 10.1016/0378-3804(81)90039-5

Google Scholar

[14] S. Wagner, 3D-Beschreibung der Oberflächenstrukturen von Feinblechen, PhD-Thesis, Universität Stuttgart, Institut für Umformtechnik, (1996)

Google Scholar

[15] J. A. Greenwood, J. B. P. Williamson, Contact of nominally flat surfaces, Int. J. Mach. Tool Des. Res. (1966), 300-319.

Google Scholar

[16] C. B. Kaminsky, Numerische Modellierung der Oberflächenwandlung von Feinblechen, PhD-Thesis, Institut für Umformtechnik und Umformmaschinen, Universität Hannover, (1999)

Google Scholar

[17] M. Ludwig, J. Stahlmann, P. Groche, Advanced Friction Model for Cold Forging Processes, in: Steel research journal (2012), pp.1003-1006

Google Scholar

[18] J. Stahlmann, E. R. Nicodemus, S. C. Sharma, P. Groche, Surface roughness evolution in FEA simulations of bulk metal forming processes, in: Wear 288 (2012), 78-87

DOI: 10.1016/j.wear.2012.02.005

Google Scholar

[19] R. Balbach, Optimierung der Oberflächenmikrogeometrie von Aluminiumfeinblech für das Karosserieziehen, PhD-Thesis, Institut für Umformtechnik, Universität Stuttgart, (1988)

DOI: 10.1007/978-3-642-83574-2

Google Scholar

[20] P. Groche, R. Schäfer, H. Justinger, M. Ludwig, On the correlation between crytallographic grain size and surface evolution in metal forming processes, in: International Journal of Mechanical Sciences 52 (2010), 523-530

DOI: 10.1016/j.ijmecsci.2009.11.017

Google Scholar

[21] I. Shimizu, J. L. Andreasen, J. I. Bech, N. Bay, Influence of workpiece surface topography on the mechanisms of liquid lubrication in strip drawing, in: Journal of tribology, Vol. 123, p.290 – 294, (2001)

DOI: 10.1115/1.1308017

Google Scholar

[22] S.-W. Lo, W. R. D. Wilson, A theoretical model of micro-pool lubrication in metal forming, in: Journal of tribology, Vol. 121, p.731 – 738, (1999)

DOI: 10.1115/1.2834129

Google Scholar

[23] A. Azushima, FEM analysis of hydrostatic pressure generated within lubricant entrapped into pocket on workpiece surface in upsetting process, in: Journal of tribology, Vol. 122, p.822 – 827, (2000)

DOI: 10.1115/1.1286160

Google Scholar

[24] Kienzle Prozessanalytik, Manual LUBRIMINI, (2011)

Google Scholar

[25] Nanofocus AG: µSurf – konfokale 3D-Topometrie Rauheit – Form – Schichtdicke. (2010)

Google Scholar

[26] W. Dutschke, Grundlagen des Tiefziehens nicht rotationssymmetrischer prismatischer Teile, Dissertation, Technische Hochschule Stuttgart, (1957)

Google Scholar