[1]
B.L. Mordike, T. Ebert, Magnesium. Properties — applications — potential, Materials Science and Engineering A 302 (2001) 37-45.
Google Scholar
[2]
V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov, Plastic metal working by simple shear, Russian Metallurgy 1 (1981) 115-123 (Engl. Transl.).
Google Scholar
[3]
J. Jiang, A. Ma, Bulk ultrafine-grained magnesium alloys by SPD processing:Technique, Microstructures and Properties, in: F. Czerwinski, Magnesium Alloys - Design, Processing and Properties, InTech, 2011, ISBN: 978-953-307-520-4.
DOI: 10.5772/13157
Google Scholar
[4]
A. Rosochowski, L. Olejnik, FEM simulation of incremental shear, in: E. Cueto, F. Chinesta, Proceedings of the 10th International Conference on Material Forming, Esaform 2007, April 18-20, 2007, Zaragoza, Spain, American Institute of Physics 907 (2007) 653-658.
DOI: 10.1063/1.2729587
Google Scholar
[5]
A. Rosochowski, L. Olejnik, Incremental equal channel angular pressing for grain refinement, Materials Science Forum 674 (2011) 19-28.
DOI: 10.4028/www.scientific.net/msf.674.19
Google Scholar
[6]
L. Olejnik, A. Rosochowski, M. Richert, Incremental ECAP of plates, Materials Science Forum, 584-586 (2008) 108-13.
DOI: 10.4028/www.scientific.net/msf.584-586.108
Google Scholar
[7]
A. Rosochowski, M. Rosochowska, L. Olejnik, B. Verlinden, Incremental equal channel angular pressing of sheets, Steel Research International 81 (2010) 470-73.
DOI: 10.1063/1.4963492
Google Scholar
[8]
A. Rosochowski, L. Olejnik, M. Richert, Double-billet incremental ECAP, Materials Science Forum 584-586 (2008) 139-44.
DOI: 10.4028/www.scientific.net/msf.584-586.139
Google Scholar
[9]
Y. Wu, I. Baker, An experimental study of equal channel angular extrusion, Scripta Materialia 37 (1997) 437–42.
DOI: 10.1016/s1359-6462(97)00132-2
Google Scholar
[10]
V.M. Segal, Equal channel angular extrusion: from macromechanics to structure formation, Materials Science and Engineering A 271 (1999) 322 – 333.
DOI: 10.1016/s0921-5093(99)00248-8
Google Scholar
[11]
R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Stable and unstable flow in materials processed by equal-channel angular pressing with an emphasis on magnesium alloys, Metallurgical and Materials Transactions A 41A (2009) 778-786.
DOI: 10.1007/s11661-009-0100-2
Google Scholar
[12]
R. Lapovok, L.S. Toth, A. Molinari, Y. Estrin, Strain localisation patterns under equal-channel angular pressing, Journal of the Mechanics and Physics of Solids 57 (2009) 122–136.
DOI: 10.1016/j.jmps.2008.09.012
Google Scholar
[13]
R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys, Acta Materialia 55 (2007) 4769–4779.
DOI: 10.1016/j.actamat.2007.04.043
Google Scholar
[14]
P.R. Cetlin, M.T.P. Aguilar, R.B. Figueiredo, T.G. Langdon, Avoiding cracks and inhomogeneities in billets processed by ECAP, Journal of Materials Science 45 (2010) 4561–4570.
DOI: 10.1007/s10853-010-4384-9
Google Scholar
[15]
Y. Estrin, R. Hellmig, Improving the properties of magnesium alloys by equal channel angular pressing, Metal Science and Heat Treatment 48 (2006) 504-507.
DOI: 10.1007/s11041-006-0126-7
Google Scholar
[16]
K. Xia, J.T. Wang, X. Wu, G. Chen, M. Gurvan, Equal channel angular pressing of magnesium alloy AZ31, Materials Science and Engineering A 410–411 (2005) 324–327.
DOI: 10.1016/j.msea.2005.08.123
Google Scholar
[17]
S. Seipp, M.F.-X. Wagner, K. Hockauf, I. Schneider, L.W. Meyer, M. Hockauf, Microstructure, crystallographic texture and mechanical properties of the magnesium alloy AZ31B after different routes of thermo-mechanical processing, International Journal of Plasticity 35 (2012) 155–166.
DOI: 10.1016/j.ijplas.2012.03.007
Google Scholar
[18]
W.J. Kim, C.W. An, Y.S. Kim, S.I. Hong, Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing, Scripta Materialia 47 (2002) 39–44.
DOI: 10.1016/s1359-6462(02)00094-5
Google Scholar
[19]
M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn, Acta Materialia 52 (2004) 5093–5103.
DOI: 10.1016/j.actamat.2004.07.015
Google Scholar
[20]
R.B. Figueiredo, Z. Szaraz, Z. Trojanova, P. Lukac, T.G. Langdon, Significance of twinning in the anisotropic behavior of a magnesium alloy processed by equal-channel angular pressing, Scripta Materialia 63 (2010) 504–507.
DOI: 10.1016/j.scriptamat.2010.05.016
Google Scholar
[21]
T. Fujita, Z. Horita, T.G. Langdon, Using grain boundary engineering to evaluate the diffusion characteristics in ultrafine-grained Al–Mg and Al–Zn alloys, Materials Science and Engineering A 371 (2004) 241–250.
DOI: 10.1016/j.msea.2003.12.042
Google Scholar
[22]
ABAQUS ver. 6.10 documentation.
Google Scholar