Key Engineering Materials
Vol. 566
Vol. 566
Key Engineering Materials
Vols. 562-565
Vols. 562-565
Key Engineering Materials
Vol. 561
Vol. 561
Key Engineering Materials
Vol. 560
Vol. 560
Key Engineering Materials
Vol. 559
Vol. 559
Key Engineering Materials
Vol. 558
Vol. 558
Key Engineering Materials
Vols. 554-557
Vols. 554-557
Key Engineering Materials
Vol. 553
Vol. 553
Key Engineering Materials
Vol. 552
Vol. 552
Key Engineering Materials
Vol. 551
Vol. 551
Key Engineering Materials
Vol. 550
Vol. 550
Key Engineering Materials
Vol. 549
Vol. 549
Key Engineering Materials
Vol. 548
Vol. 548
Key Engineering Materials Vols. 554-557
Paper Title Page
Abstract: This study demonstrates applying local laser heat treatment to produce ultrafine-grained austenite (UFGA) structures in an AISI 301LN type commercial austenitic steel. Pieces of 50% cold-rolled sheets containing more than 90% strain-induced martensite were heated locally by a laser beam to various peak temperatures to obtain different degrees of martensite reversion to austenite. Mechanical properties and formability of grain-refined and coarse-grained structures were measured by tensile and Erichsen cup tests. In addition to standard Erichsen cup test, additional interrupted tests were carried out, where cups were first stretched close to the critical strain. Drawn cups were then heated locally by a laser beam to revitalize the structure and thereby enhance the formability in the following cupping test until failure. Results showed that local laser heat treatment is suitable for the reversion treatment to refine the austenite grain size. Various structures were produced: completely reverted microstructures (T > 700 °C) with grain sizes 0.9 - 2 µm in addition to partially reverted structure (T < 700 °C) containing nano- and ultrafine-grained austenite (0.6 µm) with some martensite. The grain refinement by local annealing improved the strength properties. The Erichsen cup tests showed that the formability was equal in the completely reverted ultrafine-grained structures to that of the coarse-grained sheets. It was demonstrated that the local laser treatment restored formability of the drawn cups, allowing stretching to be continued. The second forming step after the laser-treatment provided an enhancement of 19 and 14% in the cup depths in coarse-grained and ultrafine-grained steels, respectively, even though the laser-treatment parameters were not optimized yet.
885
Abstract: The Collaborative Research Centre SFB/TR 39 PT-PIESA is developing mass production technologies and process chains for the fabrication of aluminium piezo composites, which can be used as raw material for "smart sheet metal" [1]. Microstructuring by forming is a challenging task concerning material flow, tool and process design [2]. In this study, a hybrid forming process combined of micro impact extrusion and shear displacement is presented and discussed. The formed microstructure, depicted in figure 1, consists of ten parallel primary cavities with cross sections of 0.3×0.3 mm² and four larger secondary cavities which are surrounding the primary cavities. High demands are made concerning precision and reproducibility of the cavities' geometry according to the function of the cavities, which is to serve as collets for sensitive piezo rods. The microstructure has to be formed with one stroke of the stamp. Micro backward impact extrusion is chosen for structuring the primary cavities since it allows accurate forming without aligning die plate and stamp due to a flat die plate. Shear displacement forming, which is the selected process for the secondary cavities, requires a structured and aligned die plate but the forming forces are significantly lower than forming the same geometry with an extrusion process which in turn increases the accuracy. The investigations are focused on the characterization of samples formed with the hybrid process in comparison to structures which are formed solely by impact extrusion. Geometric parameters, material flow and process parameters were evaluated to assess the hybrid process. First experiments show promising results, whereas higher degrees of deformation could be reached at lower forming forces. Exemplary, sections for both processes are depicted in figure 2.
893
Abstract: Many fasteners used in electromechanical systems are micro metal parts which should be manufactured with high accuracy and reliability and in large quantities. Micro forming is promising to fulfill these demands. This research focuses on investigating a gripping unit in a multi stage former, as the positioning unit was discussed earlier. The parameters which play important roles in the gripping unit will be discussed and the precision and reproducibility evaluated to show the performance of the unit. This includes two different tests. The first test will show how accurately the unit can locate the parts and the second one is intended to depict how the unit transfers the parts with different diameters with respect to the front profile of the fingers. The experiments showed that the manipulator can handle the parts with 7 µm accuracy, 2 µm reproducibility and 9µm uncertainty for a 20mm distance between two adjacent stations.
900
Abstract: Surrogate models are used within the sequential optimization strategy for forming processes. A sequential improvement (SI) scheme is used to refine the surrogate model in the optimal region. One of the popular surrogate modeling methods for SI is Kriging. However, the global response of Kriging models deteriorates in some cases due to local model refinement within SI. This may be problematic for multimodal optimization problems and for other applications where correct prediction of the global response is needed. In this paper the deteriorating global behavior of the Kriging surrogate modeling technique is shown for a model of a strip bending process. It is shown that a Radial Basis Function (RBF) surrogate model with Multiquadric (MQ) basis functions performs equally well in terms of optimization efficiency and better in terms of global predictive accuracy. The local point density is taken into account in the model formulation.
911
Abstract: The aim of this work is to present a POD (Proper Orthogonal Decomposition) based surrogate approach for sheet metal forming parametrized applications. The final displacement field for the stamped work-piece computed using a finite element approach is approximated using the method of snapshots for POD mode determination and kriging for POD coefficients interpolation. An error analysis, performed using a validation set, shows that the accuracy of the surrogate POD model is excellent for the representation of finite element displacement fields. A possible use of the surrogate to assess the quality of the stamped sheet is considered. The Green-Lagrange strain tensor is derived and forming limit diagrams are computed on the fly for any point of the design space. Furthermore, the minimization of a cost function based on the surrogate POD model is performed showing its potential for solving optimization problems.
919
Abstract: The simulation of the metal forming processes requires accurate constitutive models describing the material behaviour at finite strain, and taking into account several conditions. The choice of a rheological model and the determination of its parameters should be made from a test that generates such conditions. The major difficulty encountered is that there is no experimental test satisfying all these criteria. The use of more than one test seems well adapted, and is utilized to characterize the rheological behaviour at operating conditions corresponding to metal forming applications. Inverse analysis is then considered. Therefore, the difficulty lies with the long computing time that was taken when an optimization procedure is coupled with a finite element computation (FEC) to identify the material parameters. In order to solve the computing time problem, this paper proposes a hybrid identification method based on an artificial neural network and a genetic algorithm (ANN-GA). The proposed strategy is applied to identify the damage material parameters of the AISI 304 steel and using the bulge test.
928
Abstract: Nowadays, the automotive industry has focused its attention to weight reduction of the vehicles to overcome environmental restrictions. For this purpose, new materials, namely, advanced high strength steels and aluminum alloys have emerged. These materials combine good formability and ductility, with a high tensile strength due to a multi-phase structure (for the steel alloys) and reduced weight (for the aluminum alloys). As a consequence of their advanced performances, complex constitutive models are required in order to describe the various mechanical features involved. In this work, the anisotropic plastic behavior of dual-phase steels and high strength aluminum alloys is described by the non-quadratic Yld2004-18p yield criterion, combined with a mixed isotropic-nonlinear kinematic hardening law. This phenomenological model allows for an accurate description of complex anisotropy and Bauschinger effects of the materials, which are essential for a reliable prediction of deep drawing and springback results using numerical simulations. To this end, an efficient computational implementation is needed, altogether with an inverse methodology to properly identify the constitutive parameters to be used as numerical simulation input. The constitutive model is implemented in the commercial finite element code ABAQUS as a user-defined material subroutine (UMAT). A multi-stage return mapping procedure, which utilizes the control of the potential residual, is implemented to integrate the constitutive equations at any instant of time (pseudo-time), during a deformation process. Additionally, an inverse methodology is developed to identify the constitutive model parameters of the studied alloys. The identification framework is based on an interface program that links an optimization software and the commercial finite element code. This methodology compares experimental data with the respective results numerically obtained. The implemented optimization process aims to minimize an objective function, which defines the difference between experimental and numerical results using the Levenberg-Marquardt gradient-based optimization method. The proposed integrated approach is validated in a number of benchmarks in sheet metal forming, including monotonic and cyclic loading, with the goal to infer about the modelling of anisotropic effects.
936
Abstract: Bending with unloading and reverse bending are the dominant material deformations in roll forming and hence property data derived from bend tests could be more relevant than tensile test data for numerical simulation of the roll forming process. Recent investigations have shown that residual stresses affect the material behaviour close to the yield in a bending test. So, Residual stress introduced during prior steel processing may affect the roll forming process and therefore needs to be included in roll forming simulations to achieve improved model accuracy. Measuring the residual stress profile experimentally is expensive, difficult, time consuming and has limited accuracy. Analytical models are available that allow the determination of residual stress. However, for this detailed information about the pre-processing conditions is required; this information is generally not available for roll forming materials. The main goal of this study is to develop an inverse routine that generates a residual stress profile through the thickness of the material based on pure bend test data.
949
Abstract: Springback assessment for sheet metal forming processes is a challenging issue which requires to take into account complex phenomena (physical non linearities and uncertainties). We highlight that the stochastic analysis of metal forming process requires both a high precision and low cost numerical models and propose a two-pronged methodology to address these challenges. The deep drawing simulation process is performed using an original low cost semi-analytical approach based on a bending under tension model with a good accuracy for small random perturbations of the physical and process parameters. The springback variability analysis is performed using an efficient stochastic metamodel, namely a sparse version of the polynomial chaos expansion.
957
Abstract: Tube hydroforming processes are an excellent way for manufacturing reduced weight parts with complex shapes in widespread fields. Accurate numerical simulation of tube hydroforming process is particularly based on precise material parameters deduced from experimental tests. The free bulge test is widely employed for the parameter identification of tubular material behavior models by means of analytical [1] and numerical methods [2]. In this context, an inverse identification methodology using free bulge tests was developed. These tests were carried out by means of a new home-designed and manufactured bulge forming machine. The objective of this work is the validation of the inverse identification method using tube hydroforming in square cross-section die. The analysis of this particular hydroforming process with respect to material parameters is performed. For this purpose, circular section tubes made of low carbon steel S235 and aluminum alloy AA6063-O are hydroformed against square-cross sectional die using our bulge forming machine. Afterwards, FE model is constructed to simulate square-sectional hydroformed parts. The influence of some parameters, such as strain hardening exponent, anisotropy parameter and friction coefficient, on numerical square cross-sectional hydroformed part thickness is analyzed. It permits to assess the sensitivity of the thickness relative to used material parameters in the FE model. In order to validate the inverse identification procedure for both materials, experimental thicknesses along the profile of cross-sectional hydroformed parts are measured and compared with the corresponding numerical thicknesses predicted by FE model. It is proven after analyzing the obtained results that the chosen response, i.e. thickness distribution along the profile of the tube hydroforming against the square cross-section die, used for the validation is sensitive to the identified material properties. Particularly, it is demonstrated for low carbon steel S235 that numerical thickness is in good agreement with experimental data. However, for aluminum alloy AA6063-O, a discrepancy between experimental and predicted thicknesses is noticed. Anyway, it is demonstrated that inverse identification approach leads to sufficiently accurate parameters used for numerical tube hydroforming simulations. Furthermore, it seems that Hill48’s yield criterion is more suitable for describing steels plastic behavior than aluminum alloys for tube hydroforming processes. Concerning aluminum alloy, certainly the choice of appropriate yield criterion is of paramount importance on the prediction of tubular plastic behavior in tube hydroforming. Consequently, it is shown that the use of simple tube hydroforming in square-section die is suitable for the validation of FE model which is identified by inverse method using free bulge test.
966