A Two-Pronged Approach for the Assessment of Springback Variability for Sheet Metal Forming Applications

Article Preview

Abstract:

Springback assessment for sheet metal forming processes is a challenging issue which requires to take into account complex phenomena (physical non linearities and uncertainties). We highlight that the stochastic analysis of metal forming process requires both a high precision and low cost numerical models and propose a two-pronged methodology to address these challenges. The deep drawing simulation process is performed using an original low cost semi-analytical approach based on a bending under tension model with a good accuracy for small random perturbations of the physical and process parameters. The springback variability analysis is performed using an efficient stochastic metamodel, namely a sparse version of the polynomial chaos expansion.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

957-965

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Papeleux, L., Ponthot, J.: Finite element simulation of springback in sheet metal forming. Journal of Materials Processing Technology 125-126, 785--791 (2002)

DOI: 10.1016/s0924-0136(02)00393-x

Google Scholar

[2] Breitkopf, P., Naceur, H., Villon, P.: Moving least squares response surface approximation: Formulation and metal forming applications. Computers and Structures 83, 1411--1428 (2005)

DOI: 10.1016/j.compstruc.2004.07.011

Google Scholar

[3] Naceur, H., Delaméziere, A., Batoz, J., Guo Y.Q.and Knopf-Lenoir, C.: Some improvement on the optimum process design in deep drawing using the inverse approach. Journal of Material Processing Technology 146, 250--262 (2004)

DOI: 10.1016/j.jmatprotec.2003.11.015

Google Scholar

[4] Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression. Journal of Computational Physics 230, 2345--2367 (2011)

DOI: 10.1016/j.jcp.2010.12.021

Google Scholar

[5] Meinders, T., Burchitz, I., Bonte, M., Lingbeek, R.: Numerical product design: Springback prediction, compensation and optimization. International Journal of Machine Tools and Manufacture 48(5), 499--514 (2008)

DOI: 10.1016/j.ijmachtools.2007.08.006

Google Scholar

[6] Le Quilliec, G., Breitkopf, P., Roelandt, J., Juillard, P.: Plane strain sheet metal forming simulation using a semi-analytical bending-under-tension model. International Journal of Material Forming (Submitted 2012)

DOI: 10.1007/s12289-012-1122-7

Google Scholar

[7] Ghanem, R.: Stochastic Finite Elements: A Spectral Approach. Springer (1991)

Google Scholar

[8] Cameron, R., Martin, W.: Transformations of Wiener integrals under translations. The annals of Mathematics 45(2), 386--396 (1944)

DOI: 10.2307/1969276

Google Scholar

[9] Berveiller, M., Sudret, B., Lemaire, M.: Stochastic finite element : a non intrusive approach by regression. Revue Européenne de Mécanique Numérique 15, 81--92 (2006)

DOI: 10.3166/remn.15.81-92

Google Scholar

[10] Hastie, T., Tibshirani, J., Friedman, G.: The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer (2009)

Google Scholar

[11] Efron, B., Hastie, T., Johnstone, I., Tibshirani, T.: Least angle regression. The annals of statistics 32(2), 407--451 (2004)

DOI: 10.1214/009053604000000067

Google Scholar