Key Engineering Materials
Vol. 566
Vol. 566
Key Engineering Materials
Vols. 562-565
Vols. 562-565
Key Engineering Materials
Vol. 561
Vol. 561
Key Engineering Materials
Vol. 560
Vol. 560
Key Engineering Materials
Vol. 559
Vol. 559
Key Engineering Materials
Vol. 558
Vol. 558
Key Engineering Materials
Vols. 554-557
Vols. 554-557
Key Engineering Materials
Vol. 553
Vol. 553
Key Engineering Materials
Vol. 552
Vol. 552
Key Engineering Materials
Vol. 551
Vol. 551
Key Engineering Materials
Vol. 550
Vol. 550
Key Engineering Materials
Vol. 549
Vol. 549
Key Engineering Materials
Vol. 548
Vol. 548
Key Engineering Materials Vols. 554-557
Paper Title Page
Abstract: Standard finite elements can exhibit the numerical artifact of intra-plyshear locking during forming simulations. The displacement fields of elementsare piecewise continuous and cannot correctly capturediscontinuities in the shear field. This shear locking is illustrated insimulations of bias-extension experiments with an unaligned mesh. Two simpletests were developed as a critical indicator of intra-ply shear locking intriangular elements. A single-element-test shows the origin of the locking anda pull-out test indicates locking caused by small misalignments of theelements.
512
Abstract: An important aspect of the rheological characterization of semi-solid metals is the determination of the materials ability to exhibit yield stress. The yield stress is the stress level at which the material cease from purely elastic to plastic deformation. In semi-solid metal suspensions the yield stress is not a constant value, but depends on the transient state of the material. The investigation of yield stress in semi-solid metal alloys has been initiated in previous works, however, a profound understanding of the influence of the material history on the yield stress is so far lacking. In semi-solid metal suspensions, the physical cause of the yield stress is generally described by the formation of a particle "skeleton" structure which can hold a certain stress level without being subject to irreversible deformation. The yield stress in alloy suspensions can be described as a function of structural properties i.e. the solid fraction and the particle size, form and spatial distribution. It has been observed in previous works that the yield stress of semi-solid metals depends on the duration of resting time. It is generally assumed that this is due that as the material is resting, the particle network build up over time leading to an increase in the yield stress. In addition, we assume that the yield stress is also a function of the shear history as this affects the particle spatial distribution. The goal of the proposed work was to investigate the yield stress in semi-solid alloys including its dependency on the materials shear history and resting time. This was investigated both from a structural and a rheological point of view. The yield stress of the semi-solid alloys was measured with shear stress ramp and oscillation tests. Structural imaging measurements of quenched samples were performed to correlate structural parameters with the value of the yield stress. However, in semi-solid alloys, the experiments performed at a long time scale are influenced by aging of the material (Ostwald ripening). Therefore, rheological experiments were also performed with synthetic suspensions to investigate the long term yield stress dependencies without errors caused by the aging effects.
523
Abstract: The applying of burden materials containing titanium compounds in the blast furnace process and the processes of forming titanium carbides and nitrides has a directly impact on the physical and chemical properties of slag and pig iron. Thereby affecting the course of the process, its efficiency and economy. It is known that the dynamic viscosity coefficient of slag – with an increased titanium compounds content in the reducing conditions of the blast furnace - may rapidly change. The products of the reduction reaction, precipitation and separation of titanium compounds are responsible for the thickening effect of the slag and the problems of permeability of blast furnace, causing anomalies in the functioning of the unit. The presence of solid components (particles) in the melts determines the rheological character of the entire system. Authors have performed a rheological study of synthetic furnace slag concentration of TiO2 in the range of 6% to 30%. The measurements were performed at temperatures in the range between 1310-1490oC. The obtained results made it possible to carry out the rheological characteristics of analyzed liquid and semi-solid slag systems and draw of flow curves. Identifying the rheological character of semi-solid slag systems provides opportunities for the development of mathematical modeling of liquid phase flows in a dripping zone of the blast furnace, allowing e.g to indentify the unstable parts of a metallurgical aggregate.
536
Abstract: Thixoforging, one variant of semi-solid metal processing in which the metallic alloys are processed at low liquid fraction (0.1< Fl < 0.3), is used to produce complex parts with high mechanical properties. Steel thixoforging faces more challenges as compared to that of low melting point materials due to high processing temperature and lack of understanding of the thermomechanical behavior of materials in the given conditions. It is crucial to study the microstructure at the semi-solid state to improve the understanding of the thixoforging process since the material behavior strongly depends on main parameters: the liquid fraction, its distribution as well as the coherence of the solid skeleton. The microstructure has a great influence on the viscosity of the material, on the flows and finally on the final shape and mechanical properties of the thixoforged parts. Here, the characterization of the volume percentage and distribution of liquid fraction at the semi-solid state with high energy 3D X-ray microtomography was investigated on M2 steel grade as a ‘model’ alloy. The obtained results have been compared to 2D observations using EDS technique in SEM on heated and quenched specimens. They showed a good correlation making both approaches very efficient for the study of the liquid zones at the semi-solid state.
547
Abstract: Steels with manganese contents of more than 20% offer a new and favourable combination of material properties like high strength and high ductility. These extraordinary mechanical properties are based on the TWIP effect, which depends on the Stacking Fault Energy (SFE). But there are still problems in the conventional production of high-manganese steels, which prevents their widespread use. Both in casting and subsequent hot rolling difficulties occur, with the consequence that the production is very expensive. One alternative production process of high-manganese steels is strip casting, which basic feasibility was shown in earlier work. Strip casting allows the casting and rolling of hot strip in one combined process. In this way hot strip with a thickness of less than 3 mm could be produced. Characteristic for the strip cast material is the as-cast structure with a fine dendritic structure, which shows pronounced microsegregations with a short wavelength. The pronounced microsegregations can have an impact on the local chemical composition and thus on the dominating forming mechanisms that occur. In this work therefore the microsegregations of strip cast material are investigated by means of electron probe microanalysis (EPMA) measurement. Besides the local element distribution, also the presence and composition of non-metallic inclusions are analysed. Especially oxides from the casting process and sulfides from the raw material are expected. Furthermore, different annealing processes for the elimination of the dendritic as-cast structure are examined. In these experiments the temperatures were varied in the range from 900 to 1150°C at annealing times from several minutes to a few hours.
553
Abstract: Direct thin strip casting is an economically end energetically smart process for the production of steel strip. In a single process step, liquid steel can be cast and directly rolled to hot strip in thicknesses ranging from one to four millimeters. With the use of specifically profiled casting rolls it is possible to produce strip with optimized cross-sections, allowing this process to compete with tailor welded and tailor rolled blanks for the production of a class of products already widely applied in industry. Numerical and experimental studies proved the feasibility of this concept and additional simulations were used to optimize the profile to be used for the experiments. A thickness variation of one millimeter from the edge to the center could be successfully achieved. However, the dimensional precision and the roughness distribution along the cross section of the produced strip were not satisfactory. Additional profiles were applied for the experimental analysis leading to better roughness distribution and geometrical accuracy. In order to further improve the uniformity of properties along the profiled section it is necessary to increase the homogeneity of the microstructure. The coating and surface preparation of the casting rolls play a very important role in the strip casting process as they strongly affect the solidification behavior. This observation lead to the idea of selectively coating the casting rolls, applying a less conductive layer on the areas where the casted profile is thinner. Thus, a more homogeneous solidification front can be obtained. The effect of a locally modified casting roll coating on the solidification is numerically investigated and the results applied for the selection of the coating parameters to be used for the experiments.
562
Abstract: In the last years researches on thixotropic materials have been developed in order to introduce this new technology in manufacturing processes. For instance, when considering high pressure die-casting, several applications are present in literature mainly related to low melting point alloys (Al and Mg) because of the limited die life experienced when casting higher melting materials. In this case, semi-solid metal forming allows to work at lower temperature with subsequent increase in die life and reduction in production costs, combined with lower porosity level in the casting. On the other hand, in the case of conventional forging, semi-solid processing needs higher performance materials and/or coatings for the mould because of the working temperatures; however, the advantages of obtaining near net shape part in a single step, with reduced machining and finishing costs, make the semi-solid technology competitive. The present paper deals with the thixoforging of aluminum 6061 alloy, whose semi-solid feedstock material was obtained by ultrasound treatment. The application of ultrasonic waves to liquid or solidifying alloys has been already demonstrated to be an effective technique for the obtainment of globular microstructure. Along with a refining effect, ultrasound can also produce a series of beneficial effects, such as hydrogen degassing or oxide and non-metallic inclusion removal, which all improve mechanical properties of the component. The aim of this research was to investigate the influence of process parameters on final forged part quality. The solid fraction percentage as a function of temperature was measured by differential scanning calorimetric analysis. The geometry of the die was properly designed and optimized by FEM simulation in order to be suitable for forging semi-solid material, allowing a comparison with conventional forging process. 14 K-type thermocouples were used for monitoring the temperature of top and bottom dies; an instrumented 100 ton press was also equipped with load cells to acquire the forging force. A deep metallurgical analysis of the forged parts was performed in order to evaluate their mechanical properties and quality.
572
Abstract: In order to determine suitable processing conditions for semi-solid aluminium 7075 thermal analysis (TA) was performed in order to obtain the relationship between fraction solid and temperature. During experimental work, the alloy was heated to 750°C by induction furnace and solidified at various cooling rates. Cooling curves for the metal were recorded with two thermocouples, one at the centre of the melt volume and one beside the containing crucible wall. A specially designed chamber with kaowool blanket was used to achieve the slowest cooling rate. The faster cooling rate was achieved with the crucible in open atmosphere with a set air flow rate over the crucible. A Data Acquisition (DAQ) system controlled by LabVIEW software was used to record the temperature-time profiles. From these cooling curves, the phase change at any corresponding time and temperature was estimated. The temperature difference between centre and wall of crucible was used to determine dendritic coherency point (DCP). Results show that, the slowest cooling rate with the kaowool blanket was at 0.03°C/s. An intermediate cooling rate of 0.21°C/s was achieved by leaving the melt to cool without kaowool blanket or forced air flow, and the fastest cooling rate was 0.43°C/s. The change in cooling rate altered the temperatures at which phase changes occurred, including those for eutectic and solidus. It was found that for lower the cooling rates that the DCP occurred at lower temperatures. The DCP for the cooling rate of 0.03 °C/s was found to be 574°C (corresponding to 0.85 fraction solid) whereas the DCP for 0.43 °C/s was found to be 623°C (corresponding to 0.55 fraction solid).
582
Abstract: This paper presents laser surface modification of AISI 1025 low carbon steel for enhance surface hardness properties. An Nd:YAG laser system with pulse mode was used in order to modify 10mm thick plate surface. Three controlled parameters were laser power, pulse duration and overlap percentage which ranged from 100W to 200W, 0.4 to 1.0ms and 50% to 90% respectively. The treated samples was characterised for metallographic study and hardness. Metallographic study was conducted using optical microscope for laser modified layer thickness and grain size. Hardness properties were measured using Vickers indenter. The result show that hardness of laser treated area increased due to fine grain size produced in the laser modified layer. The overlapping rates increase significantly with decreasing laser scanning speed. These findings are important high wear applications.
596
Abstract: This paper presents yttria-stabilized zirconia (YSZ) coating deposition on laser surface modified H13 tool steel using atmospheric plasma spray (APS) technique. A Praxair Plasma Spray System with SG-100 gun was used to deposit coating materials on laser-modified H13 tool steel substrate surface. A bond coat layer material was NiCrAlY alloy while the top coat was yttria stabilized zirconia (YSZ) with powder size distribution range of-106 μm to +45 μm. A 23 design of experiment (DOE) was used to deposit bond coat and top coat powders with three controlled factors of input current, powder feed rate and stand-off-distance. The design was optimised for minimum porosity and maximum hardness. The coating thickness and percentage of porosity were measured using IM7000 inverted optical microscope. Hardness properties of top coating layer were measured by using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers hardness scale. The microscopy findings indicated variations of coating thickness at different parameters settings. Samples at the highest current and powder feed rate and lowest stand-off distance settings produced a lower porosity percentage and higher hardness. A higher powder feed rate with the smallest stand-off-distance allowed melted powders to travel uniformly onto the substrate surface. These findings were significant to development of thermal barrier coatings on semi-solid forming die surface.
603