[1]
C. Bellabarba, T.A. Schildhauer, A.R. Vaccaro, and J.R. Chapman, Complications associated with surgical stabilization of high-grade sacral fracture dislocations with spino-pelvic instability, Spine (Phila Pa 1976), 31 (2006) S80-8; discussion S104
DOI: 10.1097/01.brs.0000217949.31762.be
Google Scholar
[2]
T.A. Schildhauer, C. Josten, and G. Muhr, Triangular osteosynthesis of vertically unstable sacrum fractures: a new concept allowing early weight-bearing, J Orthop Trauma, 12 (1998) 307-14
DOI: 10.1097/00005131-199806000-00002
Google Scholar
[3]
N.A. Ilahee, W.K. Chiu, M. Russ, and S. Liew, 2010, Structural Assessment of the Human Pelvis using Finite Element Modelling, in 6th Australiasian Congress on Applied Mechanics, Perth, 12 - 15 December
Google Scholar
[4]
C.L. Romano, D. Romano, and N. Logoluso, Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review, Ultrasound Med Biol, 35 (2009) 529-36
DOI: 10.1016/j.ultrasmedbio.2008.09.029
Google Scholar
[5]
P.R. Mandt and D.H. Gershuni, Treatment of nonunion of fractures in the epiphyseal-metaphyseal region of long bones, J Orthop Trauma, 1 (1987) 141-51
DOI: 10.1097/00005131-198702010-00004
Google Scholar
[6]
T.A. Einhorn, Enhancement of fracture-healing, J Bone Joint Surg Am, 77 (1995) 940-56
Google Scholar
[7]
J.D. Heckman and J. Sarasohn-Kahn, The economics of treating tibia fractures. The cost of delayed unions, Bull Hosp Jt Dis, 56 (1997) 63-72
Google Scholar
[8]
L. Wong, W.K. Chiu, M. Russ, and S. Liew, Review of techniques for monitoring the healing fracture of bones for implementation in an internally fixated pelvis. 2011, Monash University, Clayton: Melbourne
DOI: 10.1016/j.medengphy.2011.08.011
Google Scholar
[9]
J. Webb, G. Herling, T. Gardner, J. Kenwright, and A.H. Simpson, Manual assessment of fracture stiffness, Injury, 27 (1996) 319-20
DOI: 10.1016/0020-1383(96)00009-5
Google Scholar
[10]
M.S.I. White, Three-dimensional Computed Tomography in the Assessment of Fracture in the Acetabulum, Injury, 22 (1991) 13-19
DOI: 10.1016/0020-1383(91)90153-6
Google Scholar
[11]
E.E. Berg, C. Chebuhar, and R.M. Bell, Pelvic trauma imaging: a blinded comparison of computed tomography and roentgenograms, J Trauma, 41 (1996) 994-8
DOI: 10.1097/00005373-199612000-00009
Google Scholar
[12]
J. Cooper, Pelvic Ring Injuries, Trauma, 8 (2006) 95-110
Google Scholar
[13]
O.M. Babatunde, A.T. Fragomen, and S.R. Rozbruch, Noninvasive Quantitative Assessment of Bone Healing After Distraction Osteogenesis, HSS J, (2009)
DOI: 10.1007/s11420-009-9130-y
Google Scholar
[14]
F.C. den Boer, J.A. Bramer, P. Patka, F.C. Bakker, R.H. Barentsen, A.J. Feilzer, E.S. de Lange, and H.J. Haarman, Quantification of fracture healing with three-dimensional computed tomography, Arch Orthop Trauma Surg, 117 (1998) 345-50
DOI: 10.1007/s004020050263
Google Scholar
[15]
C.B. Machado, W.C. de Albuquerque Pereira, M. Talmant, F. Padilla, and P. Laugier, Computational evaluation of the compositional factors in fracture healing affecting ultrasound axial transmission measurements, Ultrasound Med Biol, 36 (2010) 1314-26
DOI: 10.1016/j.ultrasmedbio.2010.05.008
Google Scholar
[16]
C.F. Njeh, J.R. Kearton, D. Hans, and C.M. Boivin, The use of quantitative ultrasound to monitor fracture healing: a feasibility study using phantoms, Med Eng Phys, 20 (1998) 781-6
DOI: 10.1016/s1350-4533(99)00014-4
Google Scholar
[17]
V.C. Protopappas, D.I. Fotiadis, and K.N. Malizos, Guided ultrasound wave propagation in intact and healing long bones, Ultrasound Med Biol, 32 (2006) 693-708
DOI: 10.1016/j.ultrasmedbio.2006.02.001
Google Scholar
[18]
J. Saulgozis, I. Pontaga, G. Lowet, and G. Van der Perre, The effect of fracture and fracture fixation on ultrasonic velocity and attenuation, Physiol Meas, 17 (1996) 201-11
DOI: 10.1088/0967-3334/17/3/006
Google Scholar
[19]
V.C. Protopappas, D.A. Baga, D.I. Fotiadis, A.C. Likas, A.A. Papachristos, and K.N. Malizos, An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones, IEEE Trans Biomed Eng, 52 (2005) 1597-608
DOI: 10.1109/tbme.2005.851507
Google Scholar
[20]
E. Bossy, M. Talmant, M. Defontaine, F. Patat, and P. Laugier, Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials, IEEE Trans Ultrason Ferroelectr Freq Control, 51 (2004) 71-9
DOI: 10.1109/tuffc.2004.1268469
Google Scholar
[21]
J.L. Cunningham, J. Kenwright, and C.J. Kershaw, Biomechanical measurement of fracture healing, J Med Eng Technol, 14 (1990) 92-101
Google Scholar
[22]
P. Laugier, Instrumentation for in vivo ultrasonic characterization of bone strength, IEEE Trans Ultrason Ferroelectr Freq Control, 55 (2008) 1179-96
DOI: 10.1109/tuffc.2008.782
Google Scholar
[23]
L.E. Claes and J.L. Cunningham, Monitoring the mechanical properties of healing bone, Clin Orthop Relat Res, 467 (2009) 1964-71
Google Scholar
[24]
G. Nikiforidis, A. Bezerianos, A. Dimarogonas, and C. Sutherland, Monitoring of fracture healing by lateral and axial vibration analysis, J Biomech, 23 (1990) 323-30
DOI: 10.1016/0021-9290(90)90060-g
Google Scholar
[25]
J.L. Cunningham, M. Evans, J.D. Harris, and J. Kenwright, The measurement of stiffness of fractures treated with external fixation, Eng Med, 16 (1987) 229-32
DOI: 10.1243/emed_jour_1987_016_051_02
Google Scholar
[26]
L.D. Nokes, The use of low-frequency vibration measurement in orthopaedics, Proc Inst Mech Eng H, 213 (1999) 271-90
Google Scholar
[27]
N.E. Conza, D.J. Rixen, and S. Plomp, Vibration testing of a fresh-frozen human pelvis: the role of the pelvic ligaments, J Biomech, 40 (2007) 1599-605
DOI: 10.1016/j.jbiomech.2006.07.001
Google Scholar
[28]
M. Tile, Pelvic ring fractures: should they be fixed?, J Bone Joint Surg Br, 70 (1988) 1-12
Google Scholar
[29]
P. Cornelissen, M. Cornelissen, G. Vanderperre, A.B. Christensen, F. Ammitzboll, and C. Dyrbye, Assessment of Tibial Stiffness by Vibration Testing Insitu .2. Influence of Soft-Tissues, Joints and Fibula, Journal of Biomechanics, 19 (1986) 551-561
DOI: 10.1016/0021-9290(86)90128-4
Google Scholar
[30]
E.M. Zanetti and C. Bignardi, Structural Analysis of Skeletal Body Elements: Numerical and Experimental Methods, in C.T. Leondes Editor, Biomechanical Systems Technology - Muscular Skeletal Systems, World Scientific, NJ, (2009)
DOI: 10.1142/9789812771384_0006
Google Scholar
[31]
Y. Nakatsuchi, A. Tsuchikane, and A. Nomura, The vibrational mode of the tibia and assessment of bone union in experimental fracture healing using the impulse response method, Med Eng Phys, 18 (1996) 575-83
DOI: 10.1016/1350-4533(96)00010-0
Google Scholar
[32]
W.K. Chiu, M. Heller, and R. Jones, Determination of the stress components of an array of piezoelectric sensors: A numerical study, Smart Materials & Structures, 6 (1997) 152-160
DOI: 10.1088/0964-1726/6/2/004
Google Scholar
[33]
C.K. Lee and T.C. Osullivan, Piezoelectric Strain Rate Gauges, Journal of the Acoustical Society of America, 90 (1991) 945-953
Google Scholar
[34]
P.F. Lichtenwalner, J.P. Dunne, R.S. Becker, and E.W. Baumann, Active damage interrogation system for structural health monitoring, Industrial and Commercial Applications of Smart Structures Technologies: Smart Structures and Materials 1997, 3044 (1997) 186-194
DOI: 10.1117/12.274663
Google Scholar