Experimental Testing of Vibration Analysis Methods to Monitor Recovery of Stiffness of a Fixated Synthetic Pelvis: A Preliminary Study

Article Preview

Abstract:

Monitoring the healing of long bones has been studied extensively to reduce the period of encumbrance and unnecessary pain for patients suffering from fractured bones. This is more critical for unstable fractures in the pelvis as the patients can bedridden for up to 12 weeks to allow proper healing to take place. Current methods employed to monitor long bone healing are insufficient for applications in the pelvis as the human pelvis presents a significant change in geometry which demands a different approach. This paper explores an approach where vibration analysis is used to provide in-situ monitoring of a healing fracture in a human pelvis. Experimental tests were conducted on 4th generation synthetic pelvises instrumented with an array of PZT sensors. The synthetic pelvises were cut at the sacrum to simulate a fractured pelvis followed by the application of araldite epoxy to simulate healing by allowing the epoxy to cure. Measurements were collected from the sensor array over the curing period to obtain the transfer functions (TFs) for various excitations. An impact hammer was utilised to obtain powerful broadband excitations while the PZT sensors were used to detect the response in the synthetic pelvis as a results of these excitation signals. A comparison of TF against cure time (healed amount) indicates the presence of a significant relationship with the stiffness recovery of the epoxy at the cut of the synthetic model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

386-399

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Bellabarba, T.A. Schildhauer, A.R. Vaccaro, and J.R. Chapman, Complications associated with surgical stabilization of high-grade sacral fracture dislocations with spino-pelvic instability, Spine (Phila Pa 1976), 31 (2006) S80-8; discussion S104

DOI: 10.1097/01.brs.0000217949.31762.be

Google Scholar

[2] T.A. Schildhauer, C. Josten, and G. Muhr, Triangular osteosynthesis of vertically unstable sacrum fractures: a new concept allowing early weight-bearing, J Orthop Trauma, 12 (1998) 307-14

DOI: 10.1097/00005131-199806000-00002

Google Scholar

[3] N.A. Ilahee, W.K. Chiu, M. Russ, and S. Liew, 2010, Structural Assessment of the Human Pelvis using Finite Element Modelling, in 6th Australiasian Congress on Applied Mechanics, Perth, 12 - 15 December

Google Scholar

[4] C.L. Romano, D. Romano, and N. Logoluso, Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review, Ultrasound Med Biol, 35 (2009) 529-36

DOI: 10.1016/j.ultrasmedbio.2008.09.029

Google Scholar

[5] P.R. Mandt and D.H. Gershuni, Treatment of nonunion of fractures in the epiphyseal-metaphyseal region of long bones, J Orthop Trauma, 1 (1987) 141-51

DOI: 10.1097/00005131-198702010-00004

Google Scholar

[6] T.A. Einhorn, Enhancement of fracture-healing, J Bone Joint Surg Am, 77 (1995) 940-56

Google Scholar

[7] J.D. Heckman and J. Sarasohn-Kahn, The economics of treating tibia fractures. The cost of delayed unions, Bull Hosp Jt Dis, 56 (1997) 63-72

Google Scholar

[8] L. Wong, W.K. Chiu, M. Russ, and S. Liew, Review of techniques for monitoring the healing fracture of bones for implementation in an internally fixated pelvis. 2011, Monash University, Clayton: Melbourne

DOI: 10.1016/j.medengphy.2011.08.011

Google Scholar

[9] J. Webb, G. Herling, T. Gardner, J. Kenwright, and A.H. Simpson, Manual assessment of fracture stiffness, Injury, 27 (1996) 319-20

DOI: 10.1016/0020-1383(96)00009-5

Google Scholar

[10] M.S.I. White, Three-dimensional Computed Tomography in the Assessment of Fracture in the Acetabulum, Injury, 22 (1991) 13-19

DOI: 10.1016/0020-1383(91)90153-6

Google Scholar

[11] E.E. Berg, C. Chebuhar, and R.M. Bell, Pelvic trauma imaging: a blinded comparison of computed tomography and roentgenograms, J Trauma, 41 (1996) 994-8

DOI: 10.1097/00005373-199612000-00009

Google Scholar

[12] J. Cooper, Pelvic Ring Injuries, Trauma, 8 (2006) 95-110

Google Scholar

[13] O.M. Babatunde, A.T. Fragomen, and S.R. Rozbruch, Noninvasive Quantitative Assessment of Bone Healing After Distraction Osteogenesis, HSS J, (2009)

DOI: 10.1007/s11420-009-9130-y

Google Scholar

[14] F.C. den Boer, J.A. Bramer, P. Patka, F.C. Bakker, R.H. Barentsen, A.J. Feilzer, E.S. de Lange, and H.J. Haarman, Quantification of fracture healing with three-dimensional computed tomography, Arch Orthop Trauma Surg, 117 (1998) 345-50

DOI: 10.1007/s004020050263

Google Scholar

[15] C.B. Machado, W.C. de Albuquerque Pereira, M. Talmant, F. Padilla, and P. Laugier, Computational evaluation of the compositional factors in fracture healing affecting ultrasound axial transmission measurements, Ultrasound Med Biol, 36 (2010) 1314-26

DOI: 10.1016/j.ultrasmedbio.2010.05.008

Google Scholar

[16] C.F. Njeh, J.R. Kearton, D. Hans, and C.M. Boivin, The use of quantitative ultrasound to monitor fracture healing: a feasibility study using phantoms, Med Eng Phys, 20 (1998) 781-6

DOI: 10.1016/s1350-4533(99)00014-4

Google Scholar

[17] V.C. Protopappas, D.I. Fotiadis, and K.N. Malizos, Guided ultrasound wave propagation in intact and healing long bones, Ultrasound Med Biol, 32 (2006) 693-708

DOI: 10.1016/j.ultrasmedbio.2006.02.001

Google Scholar

[18] J. Saulgozis, I. Pontaga, G. Lowet, and G. Van der Perre, The effect of fracture and fracture fixation on ultrasonic velocity and attenuation, Physiol Meas, 17 (1996) 201-11

DOI: 10.1088/0967-3334/17/3/006

Google Scholar

[19] V.C. Protopappas, D.A. Baga, D.I. Fotiadis, A.C. Likas, A.A. Papachristos, and K.N. Malizos, An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones, IEEE Trans Biomed Eng, 52 (2005) 1597-608

DOI: 10.1109/tbme.2005.851507

Google Scholar

[20] E. Bossy, M. Talmant, M. Defontaine, F. Patat, and P. Laugier, Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials, IEEE Trans Ultrason Ferroelectr Freq Control, 51 (2004) 71-9

DOI: 10.1109/tuffc.2004.1268469

Google Scholar

[21] J.L. Cunningham, J. Kenwright, and C.J. Kershaw, Biomechanical measurement of fracture healing, J Med Eng Technol, 14 (1990) 92-101

Google Scholar

[22] P. Laugier, Instrumentation for in vivo ultrasonic characterization of bone strength, IEEE Trans Ultrason Ferroelectr Freq Control, 55 (2008) 1179-96

DOI: 10.1109/tuffc.2008.782

Google Scholar

[23] L.E. Claes and J.L. Cunningham, Monitoring the mechanical properties of healing bone, Clin Orthop Relat Res, 467 (2009) 1964-71

Google Scholar

[24] G. Nikiforidis, A. Bezerianos, A. Dimarogonas, and C. Sutherland, Monitoring of fracture healing by lateral and axial vibration analysis, J Biomech, 23 (1990) 323-30

DOI: 10.1016/0021-9290(90)90060-g

Google Scholar

[25] J.L. Cunningham, M. Evans, J.D. Harris, and J. Kenwright, The measurement of stiffness of fractures treated with external fixation, Eng Med, 16 (1987) 229-32

DOI: 10.1243/emed_jour_1987_016_051_02

Google Scholar

[26] L.D. Nokes, The use of low-frequency vibration measurement in orthopaedics, Proc Inst Mech Eng H, 213 (1999) 271-90

Google Scholar

[27] N.E. Conza, D.J. Rixen, and S. Plomp, Vibration testing of a fresh-frozen human pelvis: the role of the pelvic ligaments, J Biomech, 40 (2007) 1599-605

DOI: 10.1016/j.jbiomech.2006.07.001

Google Scholar

[28] M. Tile, Pelvic ring fractures: should they be fixed?, J Bone Joint Surg Br, 70 (1988) 1-12

Google Scholar

[29] P. Cornelissen, M. Cornelissen, G. Vanderperre, A.B. Christensen, F. Ammitzboll, and C. Dyrbye, Assessment of Tibial Stiffness by Vibration Testing Insitu .2. Influence of Soft-Tissues, Joints and Fibula, Journal of Biomechanics, 19 (1986) 551-561

DOI: 10.1016/0021-9290(86)90128-4

Google Scholar

[30] E.M. Zanetti and C. Bignardi, Structural Analysis of Skeletal Body Elements: Numerical and Experimental Methods, in C.T. Leondes Editor, Biomechanical Systems Technology - Muscular Skeletal Systems, World Scientific, NJ, (2009)

DOI: 10.1142/9789812771384_0006

Google Scholar

[31] Y. Nakatsuchi, A. Tsuchikane, and A. Nomura, The vibrational mode of the tibia and assessment of bone union in experimental fracture healing using the impulse response method, Med Eng Phys, 18 (1996) 575-83

DOI: 10.1016/1350-4533(96)00010-0

Google Scholar

[32] W.K. Chiu, M. Heller, and R. Jones, Determination of the stress components of an array of piezoelectric sensors: A numerical study, Smart Materials & Structures, 6 (1997) 152-160

DOI: 10.1088/0964-1726/6/2/004

Google Scholar

[33] C.K. Lee and T.C. Osullivan, Piezoelectric Strain Rate Gauges, Journal of the Acoustical Society of America, 90 (1991) 945-953

Google Scholar

[34] P.F. Lichtenwalner, J.P. Dunne, R.S. Becker, and E.W. Baumann, Active damage interrogation system for structural health monitoring, Industrial and Commercial Applications of Smart Structures Technologies: Smart Structures and Materials 1997, 3044 (1997) 186-194

DOI: 10.1117/12.274663

Google Scholar