Influence of Сellulose Stearate (CS) Content on Thermal and Rheological Properties of Poly(lactic acid)/CS Composites

Article Preview

Abstract:

Recently, a deliberate interest to look for composites that are eco-friendly and biodegradable appears. Therefore materials based on raw materials derived from natural resources of plant are being studied. One of the most promising bio-based polymers that have attracted the interest of many researchers is poly(lactic acid), which is made from plants and is readily biodegradable. Cellulose is one of the strongest and stiffest fibres available and it has a high potential to act as reinforcing agent in biopolymers. In our work we esterified cellulose using stearoyl chloride in ionic liquid and studied the effect of cellulose stearate addition to matrix polymers on thermal and rheological properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-104

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Auras, L. Lim, S. Selke, H. Tsuji, POLY(LACTIC ACID): Synthesis, Structures, Properties, Processing, and Applications, John Wiley & Sons, Hoboken, New Jersey, 2010.

DOI: 10.1002/9780470649848

Google Scholar

[2] R. Liao, B. Yang, W. Yu, C. Zhou, Isothermal Cold Crystallization Kinetics of Polylactide/Nucleating Agents. J. Appl. Polym. Sci., 104 (2007) 310-317.

DOI: 10.1002/app.25733

Google Scholar

[3] C. Baillie. Green Composites: Polymer Composites and the Environment, Woodhead Publishing Ltd, 2004.

Google Scholar

[4] L. Petersson, I. Kvien, K. Oksman, Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials, Compos. Sci. Technol., 67 (2007) 2535-2544.

DOI: 10.1016/j.compscitech.2006.12.012

Google Scholar

[5] L. Yu, H. Liu, K. Dean, L. Chen, Cold Crystallization and Postmelting Crystallization of PLA Plasticized by Compressed Carbon Dioxide, J. Polym. Sci. Polym. Phys., 46 (2008) 2630-2636.

DOI: 10.1002/polb.21599

Google Scholar

[6] A.P. Mathew, K. Oksman, M. Sain, The Effect of Morphology and Chemical Characteristics of Cellulose Reinforcements on the Crystallinity
of Polylactic Acid, J. Appl. Polym. Sci., 101 (2006) 300-310.

DOI: 10.1002/app.23346

Google Scholar

[7] Y. He, Y, Xu, J. Wei, Z. Fan, S. Li, Unique crystallization behavior of poly(L-lactide) / poly(D-lactide) stereocomplex depending on initial melt states, Polymer, 49 (2008) 5670-5675.

DOI: 10.1016/j.polymer.2008.10.028

Google Scholar

[8] M. Day, A. V. Nawaby, X. Liao, A DSC Study of the Crystallization Behaviour of Polylactic acid and its Nanocomposites, J. Therm. Anal. Calorim., 86 (2006) 623-629.

DOI: 10.1007/s10973-006-7717-9

Google Scholar

[9] J. George, M.S. Sreekala, S. Thomas, A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites, Polym. Eng. Sci., 41 (2001) 1471-1485.

DOI: 10.1002/pen.10846

Google Scholar

[10] L. Suryanegara, A.N. Nakagaito, H. Yano, Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composite, Cellulose, 2010, (2010) 771-778.

DOI: 10.1007/s10570-010-9419-5

Google Scholar

[11] T.G. Mezger, The Rheology Handbook, second ed., Vincentz Network, Hannover, 2006.

Google Scholar

[12] S. Barthel, T. Heinze, Acylation and carbanilation of cellulose in ionic liquids, Green Chem, 8 (2006) 301-306.

DOI: 10.1039/b513157j

Google Scholar