[1]
Zhang X, Boscolo M, Figueroa-Gordon D, Allegri G, Irving PE (2009) Fail-Safe Design of Integral Metallic Aircraft Structures Reinforced by Bonded Crack Retarders. Engineering Fracture Mechanics 76:114-133.
DOI: 10.1016/j.engfracmech.2008.02.003
Google Scholar
[2]
Wen PH, Aliabadi MH, Young A (2000) Plane stress and plate bending coupling in BEM analysis of shallow shells. Int J Numer Meth Engng 48:1107–25.
DOI: 10.1002/(sici)1097-0207(20000720)48:8<1107::aid-nme913>3.0.co;2-s
Google Scholar
[3]
Dirgantara T, Aliabadi MH (2000) Crack growth analysis of plates loaded by bending and tension using dual boundary element method. Int J Fract 105:27–47.
Google Scholar
[4]
Wen PH, Aliabadi MH, Young A (2004) Crack growth analysis for multi-layered airframe structures by boundary element method. Engineering Fracture Mechanics 71: 619–631.
DOI: 10.1016/s0013-7944(03)00021-3
Google Scholar
[5]
Leonel E. D., Venturini W. S. (2011) Multiple random crack propagation using a boundary element formulation. Engineering Fracture Mechanics 78: 1077-1090.
DOI: 10.1016/j.engfracmech.2010.11.012
Google Scholar
[6]
Romlay F.R.M., Ouyang H, Ariffin A.K., Mohamed N.A.N. (2010) Modeling of fatigue crack propagation using dual boundary element method and Gaussian Monte Carlo method. Engineering Analysis with Boundary Elements 34: 297–305.
DOI: 10.1016/j.enganabound.2009.09.006
Google Scholar
[7]
Azadi H., Khoei A. R. (2011) Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing. Int. J. Numer. Meth. Engng; 85:1017–1048.
DOI: 10.1002/nme.3002
Google Scholar
[8]
Goangseup Z., Jeong-Hoon S., Budyn E., Sang-Ho L., Belytschko T. (2004) A method for growing multiple cracks without remeshing and its application to fatigue crack growth. Modelling Simul. Mater. Sci. Eng. 12; 901–915.
DOI: 10.1088/0965-0393/12/5/009
Google Scholar
[9]
Chopp D.L., Sukumar N. (2003) Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method; International Journal of Engineering Science 41; 845–869.
DOI: 10.1016/s0020-7225(02)00322-1
Google Scholar
[10]
Ooi E.T., Yang Z.J. (2009) Modelling multiple cohesive crack propagation using a finite element–scaled boundary finite element coupled method; Engineering Analysis with Boundary Elements 33; 915–929.
DOI: 10.1016/j.enganabound.2009.01.006
Google Scholar
[11]
Wolf J.P., Song C.M. (1996) Finite-element modelling of unbounded media. Chichester: Wiley.
Google Scholar
[12]
Portela A, Aliabadi MH & Rooke DP (1991) The dual boundary element method: effective implementation for crack problems. Int. Journ. Num. Meth. Engng. 33:1269-1287.
DOI: 10.1002/nme.1620330611
Google Scholar
[13]
Mi Y, Aliabadi MH (1994) Three-dimensional crack growth simulation using BEM. Computers & Structures 52:871-878.
DOI: 10.1016/0045-7949(94)90072-8
Google Scholar
[14]
Mi Y (1996) Three-dimensional analysis of crack growth - Topics in Engineering 28, Computational Mechanics Publ., Southampton, U.K.
Google Scholar
[15]
Salvadori A., Gray L. (2007) Analytical integrations and SIFs computation in 2D fracture mechanics – Int. J. Numer. Meth. Engng 70:445–495.
DOI: 10.1002/nme.1888
Google Scholar
[16]
Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 86:519-527.
DOI: 10.1115/1.3656897
Google Scholar
[17]
Armentani E, Citarella R (2006) DBEM and FEM analysis on non-linear multiple crack propagation in an aeronautic doubler-skin assembly. International Journal of Fatigue 28:598–608.
DOI: 10.1016/j.ijfatigue.2005.06.050
Google Scholar
[18]
Mallardo V (2009) Integral equations and nonlocal damage theory: a numerical implementation using the BDEM. International Journal of Fracture 157 (1-2): 13-32.
DOI: 10.1007/s10704-008-9297-0
Google Scholar
[19]
Forman RG, Shivakumar V, Newman JC (1993) Fatigue Crack Growth Computer Program "NASA/FLAGRO" Version 3.0, National Aeronautics and Space Administration Lyndon B. Johson Space Center, Houston, Texas.
Google Scholar
[20]
Tanaka K (1974) Fatigue crack propagation from a crack inclined to the cyclic tensile axis, Engineering Fracture Mechanics 6:493-500.
DOI: 10.1016/0013-7944(74)90007-1
Google Scholar
[21]
Citarella R, Cricrì G (2009) A two-parameter model for crack growth simulation by combined FEM-DBEM approach, Advances in Engineering Software 40 (5), 363–377.
DOI: 10.1016/j.advengsoft.2008.05.001
Google Scholar
[22]
Häusler SM, Baiz PM, Tavares SMO, Brot A, Horst P, Aliabadi MH, de Castro PMST and Peleg-Wolfin Y (2011) Crack Growth Simulation in Integrally Stiffened Structures Including Residual Stress Effects from Manufacturing. Part I: Model Overview, SDHM 7(3), 163-190
Google Scholar
[23]
Häusler SM, Baiz PM, Tavares SMO, Brot A, Horst P, Aliabadi MH, de Castro PMST and Peleg-Wolfin Y (2011) Crack Growth Simulation in Integrally Stiffened Structures Including Residual Stress Effects from Manufacturing. Part II: Model Overview, SDHM 7(3), 191-209.
Google Scholar
[24]
Carlone P., Citarella R., Lepore M. and Palazzo G.S., Numerical Crack Growth Analysis in AA2024-T3 Friction Stir Welded Butt Joints, Proceedings of The Eighth International Conference on Engineering Computational Technology, 4-7 September 2012, Dubrovnik–Croatia.
DOI: 10.4203/ccp.100.91
Google Scholar
[25]
Citarella R, Silvestri M, Apicella A (2006) DBEM crack growth simulation and experimental results for a multi-layer and multi-material aeronautic panel. Key Engineering Materials 324-325:1123-1126.
DOI: 10.4028/www.scientific.net/kem.324-325.1123
Google Scholar
[26]
Citarella R, Lepore M, Apicella A, Calì C (2007) DBEM Crack Growth Simulation for a Riveted Aeronautic Reinforcement under Non-linear Contact Conditions. Key Engineering Materials 348-349:593-596.
DOI: 10.4028/www.scientific.net/kem.348-349.593
Google Scholar
[27]
Citarella R (2009) Non Linear MSD crack growth by DBEM for a riveted aeronautic reinforcement. Advances in Engineering Software 40 (4):253–259.
DOI: 10.1016/j.advengsoft.2008.04.007
Google Scholar
[28]
Citarella R, Cricrì G (2010) Comparison of DBEM and FEM Crack Path Predictions in a notched Shaft under Torsion. Engineering Fracture Mechanics 77:1730-1749.
DOI: 10.1016/j.engfracmech.2010.03.012
Google Scholar
[29]
Citarella R, Buchholz F-G (2008) Comparison of crack growth simulation by DBEM and FEM for SEN-specimens undergoing torsion or bending loading. Engineering Fracture Mechanics 75:489–509.
DOI: 10.1016/j.engfracmech.2007.03.039
Google Scholar
[30]
Citarella R, Buchholz F-G (2007) Comparison of DBEM and FEM Crack Path Predictions with Experimental Findings for a SEN-Specimen under Anti-Plane Shear Loading. Key Engineering Materials 348-349: 129-132.
DOI: 10.4028/www.scientific.net/kem.348-349.129
Google Scholar
[31]
Citarella R, Soprano A (2006) Some SIF's evaluations by Dual BEM for 3D cracked plates. Journal of Achievements in Materials and Manufacturing Engineering 19(2): 64-72.
Google Scholar
[32]
Citarella R, Perrella M (2005) Multiple surface crack propagation: numerical simulations and experimental tests. Fatigue and Fracture of Engineering Material and Structures 28:135-148.
DOI: 10.1111/j.1460-2695.2004.00842.x
Google Scholar
[33]
Calì C, Citarella R, Perrella M (2003) Three-dimensional crack growth: numerical evaluations and experimental tests, Biaxial/Multiaxial Fatigue and Fracture, ESIS Publication 31: 341-360, Ed. Elsevier.
DOI: 10.1016/s1566-1369(03)80019-5
Google Scholar
[34]
Armentani E, Citarella R, Sepe R (2011) FML Full Scale Aeronautic Panel Under Multiaxial Fatigue: Experimental Test and DBEM Simulation. EFM Special Issue on 'Multiaxial Fracture' 78 (8):1717-1728.
DOI: 10.1016/j.engfracmech.2011.02.020
Google Scholar
[35]
Armentani E, Caputo F, Esposito R, Godono G (2001) A new three loading axes machine for static and fatigue tests, Proceedings of the Sixth International Conference on Biaxial/Multiaxial Fatigue & Fracture, Lisboa, Portugal, June 25-28, Vol. 1, pp.323-330.
Google Scholar
[36]
Apicella A, Armentani E, Esposito R (2006) Fatigue test on a full scale panel. Key Engineering Materials 324-325: 719-722.
DOI: 10.4028/www.scientific.net/kem.324-325.719
Google Scholar
[37]
Alderliesten RC (2005) Fatigue Crack Propagation and Delamination Growth in Glare. PhD Thesis, Delft University of Technology.
Google Scholar
[38]
Riccio A. (2005) Effects of geometrical and material features on damage onset and propagation in single-lap bolted composite joints under tensile load: Part II - Numerical studies, Journal of Composite Materials 39(23): 2091-2113.
DOI: 10.1177/0021998305052027
Google Scholar
[39]
Citarella R., Ascione V., Lepore M., Calì C., Fatigue Crack propagation by DBEM in a FML aeronautic full scale panel, Proceedings of the Seventh International Conference on Engineering Computational Technology ECT 2010, 14-17 September, Valencia, Spain, 2010, ISBN 978-1-905088-41-6.
DOI: 10.4203/ccp.94.62
Google Scholar
[40]
Armentani E, Caputo F, Esposito R, Godono G (2004) Evaluation of energy release rate for delamination defects at the skin/stringer interface of a stiffened composite panel. Engineering Fracture Mechanics 71(4-6): 885-895.
DOI: 10.1016/s0013-7944(03)00045-6
Google Scholar
[41]
Citarella R (2011) MSD Crack propagation on a repaired aeronautic panel by DBEM. Advances in Engineering Software 42(10): 887-901.
DOI: 10.1016/j.advengsoft.2011.02.014
Google Scholar
[42]
Calomfirescu M, Daoud F, Pühlhofer T (2010) A new look into structural design philosophies for aerostructures with advanced optimization methods and tools, IV European Conference on Computational Mechanics, Palais des Congrès, Paris, France, May 16-21.
Google Scholar
[43]
Citarella R, Apicella A (2006) Advanced Design Concepts and Maintenance by Integrated Risk Evaluation for Aerostructures. Structural Durability and Health Monitoring 2(3):183-196.
Google Scholar