Fatigue Multi-Cracks Growths in Plates Using J-Integral Approach with a Developed Home FEM Software

Article Preview

Abstract:

In this paper multiple fatigue cracks propagation are simulated in two-dimensional plates. Since re-meshing the cracked bodies in each increment of crack extension is a time-consuming and complicated procedure, numerical simulation of mixed-mode crack propagation with FEM is a difficulty. For this purpose, a FEM software is programmed and mesh refinement in each increment of crack is performed by Delaunay Refinement Algorithm. Using different refinement methods, complex boundaries such as multiple cracks and discontinuities which are closed together are easily refined by this algorithm. Crack propagation path is predicted using domain form of J-integral. Modified tensile stress (MTS) criterion is used to predict the crack propagation path in each increment. Different numerical examples illustrate the validation and reliability of present software.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-70

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. H. Aliabadi, Int. J. of Fracture, , Vol. 86 (1997), pp.91-125.

Google Scholar

[2] A. Portela, M.H. Aliabadi, D.P. Rooke, Computers & Struct., Vol. 46(2) (1993), p.237–247.

Google Scholar

[3] E. D. Leonel, W. S. Venturini. Engng. Fract. Mech. Vol. 78 (2011), pp.1077-1090.

Google Scholar

[4] W. K. Liu, S. Hao, T. Belytschko, S. F. Li, C. T Chang. Computational Materials Science, Vol. 16, (1999), pp.197-205.

Google Scholar

[5] T. Rabczuk, S. Bordas, G. Zi, Computational Mechanics, , Vol. 40(3) (2007),pp.473-495.

Google Scholar

[6] S. Mohammadi: Extended Finite Element Method for Fracture Analysis of Structures, Blackwell Publishers, UK (2007).

Google Scholar

[7] N. Sukumar, D. L. Chopp, B. Moran. Engng. Fract. Mech, Vol. 70(1) (2003), pp.29-48.

Google Scholar

[8] J. R. Shewchuk: Computational Geometry: Theory and Applications, Vol. 22(1-3) (2002), pp.21-74

Google Scholar

[9] A. George, J. W. H. Liu: Computer solution of large sparse positive definite systems, (Prentice-Hall series in computational mathematics, Prentice-Hall, NJ, USA, 1981)

Google Scholar

[10] J. R. Rice: J. of Appl. Mech. Vol. 35(1968),pp.379-386

Google Scholar

[11] W. K. Wilson, I. W. Yu: Int. J. of Fract. Vol. 15(4)(1979), pp.377-387

Google Scholar

[12] C. H. Wang: Introduction to Fracture Mechanics (DSTO Publishing, Australia, (1996).

Google Scholar

[13] C. Shih, R. Asaro: Journal of Applied Mechanics Vol. 55(1988), pp.299-316

Google Scholar

[14] B. Moran, C. F. Shih: Engng. Fract. Mech. Vol. 27(6) (1987),pp.615-642

Google Scholar

[15] M.A. Hussain, S.L. Pu, J. Underwood: ASTMSTP 560 (1974), pp.2-28

Google Scholar

[16] X.M. Kong, N. Schluter, W. Dahl: Engng. Fract. Mech. Vol. 52(2) (1995),pp.379-88

Google Scholar

[17] G.C. Sih: Int. J. Fract. Vol. 10(3) (1974), pp.305-21

Google Scholar

[18] P.S. Theocaris, N.P. Andrianopoulos: Engng. Fract. Mech. Vol. 16(3) (1982), pp.425-32

Google Scholar

[19] F. Erdogan, G.C. Sih: J. Basic. Engng. Vol. 85 (1963), pp.519-27

Google Scholar

[20] H. Hosseini-Toudeshky, B. Mohammadi, H. R. Daghyani: Composite Science and Technology, Vol.66 (2006), pp.188-198

DOI: 10.1016/j.compscitech.2005.04.028

Google Scholar

[21] R.D. Wang: Engng. Fract. Mech.Vol.56(3) (1997), p.347–356

Google Scholar

[22] Y. Xiangqiao: Engng. Fract. Mech. Vol.74 (2007),p.2225–2246

Google Scholar

[23] N. Moes, N. Sukumar, B. Moran, T. Belytschko: An Extended Finite Element Method (X-FEM) for Two- and Three Dimensional Crack Modeling, ECCOMAS, Barcelona (2000).

Google Scholar