Optimization Analysis on the Transmission Characteristics of Semi-Circle Long-Range Dielectric-Loaded Surface Plasmon-Polariton Waveguides

Article Preview

Abstract:

Semi-circle long-range dielectric-loaded surface plasmon-polariton waveguide (LR-DLSPPW) is proposed, in which a thin and narrow metal stripe (15-nm-thick and 500-nm-wide) is sandwiched between a semi-circle dielectric ridge(with the refractive index of 1.535 ,the radius of 777 nm) and a dielectric film (with the refractive index of 1.493) supported by low-index substrate (with the refractive index of 1.34). The mode effective index, propagation length, mode width and figures of merit of the fundamental mode supported using the finite-element method are calculated at the telecom wavelength λ =1.55μm for different dimensions (t) of the dielectric film. It was calculated that the optimized structure have the maximized parameters with figures of merit 3.75×10¬6and propagation length 3.7mm at t=570 nm. The semi-circle LR-DLSPPW structure is found to exhibit about 20% increase of the propagation length as compared to the conventional rectangular LR-DLSPPW while ridge thickness t≤600 nm. The proposed configuration allows for easy connection to electrodes enabling, and is technologically simple being compatible with planar fabrication using UV-lithography.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

1510-1515

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(2003) 824–830.

DOI: 10.1038/nature01937

Google Scholar

[2] S.I. Bozhevolnyi, V.S. Volkov, E.Devaux, J.Y. Laluet, T.W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature, 440 (2006) 508 –511.

DOI: 10.1038/nature04594

Google Scholar

[3] R. Zia, J.A. Schuller, A. Chandran, and M.L. Brongersma. Plasmonics - the wave of chip-scale device technologies, Materials Today, 9 (2006), 20-27.

DOI: 10.1016/s1369-7021(06)71572-3

Google Scholar

[4] T. Holmgaard, S.I. Bozhevolnyi, Theoretical analysis of dielectric-loaded surface plasmon- polariton waveguides, J. Phys. Rev. B 75(2007), 245405.

DOI: 10.1103/physrevb.75.245405

Google Scholar

[5] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Guiding of a one- dimensional optical beam with nanometer diameter, J. Opt. Lett. 22(1997) 475.

DOI: 10.1364/ol.22.000475

Google Scholar

[6] M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles, J.Opt. Lett. 23(1998), 1331.

DOI: 10.1364/ol.23.001331

Google Scholar

[7] I. V. Novikov and A. A. Maradudin, Channel polaritons, J. Phys. Rev. B 66 (2002), 035403.

Google Scholar

[8] A. Hohenau, J. K. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, F. R. Ausseneg, Dielectric optical elements for surface plasmons, J.Opt. Lett. 30(2005) 893–895.

DOI: 10.1364/ol.30.000893

Google Scholar

[9] T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides, J. Opt. Exp. 16(2008), 13585–13592.

DOI: 10.1364/oe.16.013585

Google Scholar

[10] T. Holmgaard, S.I. Bozhevolnyi, L. Markey, A. Dereux, A.V. Krasavin, P. Bolger, A.V. Zayats, Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecomm- unication wavelengths, J. Phys. Rev. B 78 (2008) 165431.

DOI: 10.1103/physrevb.78.165431

Google Scholar

[11] J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjel-strup-Hansen, L. Markey, and A. Dereux, Thermo-optic control of di-electric-loaded plasmonic waveguide components, J. Opt. Exp. ,18(2010) 1207.

DOI: 10.1364/oe.18.001207

Google Scholar

[12] J. J. Burke, G. I. Stegeman, and T. Tamir, Surface-polariton-like Waves guided by thin, lossy metal films, J. Phys. Rev. B 33(1986) 5186–5201.

DOI: 10.1103/physrevb.33.5186

Google Scholar

[13] R. Charbonneau, P. Berini, E. Bero lo, E. Lisicka-Shrzek, Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width, J. Opt. Lett. , 25(2000) 844–846.

DOI: 10.1364/ol.25.000844

Google Scholar

[14] Pierre Berini, Long-range surface plasmon polaritons, J. Advances in Optics and Photonics., 1(2009) 484-588.

DOI: 10.1364/aop.1.000484

Google Scholar

[15] Pierre Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures, J. Phys. Rev. B 61(2000) 10484–10503.

DOI: 10.1103/physrevb.61.10484

Google Scholar

[16] A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, Integrated optical components utilizing long-range surface plasmon polaritons, J. Lightw. Technol., 23(2005) 413–422.

DOI: 10.1109/jlt.2004.835749

Google Scholar

[17] T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, Surface Plasmon polariton based modulators and switches operating at telecom wavelengths, J. App. Phys. Lett., 85(2004) 5833.

DOI: 10.1063/1.1835997

Google Scholar

[18] T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, Long-range dielectric-loaded surface plasmon-polariton waveguides, J. Opt. Exp. , 18(2010) 23009–23015.

DOI: 10.1364/oe.18.023009

Google Scholar

[19] J. Gosciniak, T. Holmgaard, S. I. Bozhevolnyi, Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides, J. Lightw.Techno., 29(2011) 1473-1481.

DOI: 10.1109/jlt.2011.2134071

Google Scholar

[20] J.K.S. Poon,L.Zhu G.A.DeRose,A.Yariv,Transmissionand group delay of microring coupled-resonator optical waveguides, J.Opt. Lett., 31(2006) 456–458.

DOI: 10.1364/ol.31.000456

Google Scholar

[21] E. D. Palik , Handbook of Optical Constants of Solids , first ed., New York: Academic, 1985.

Google Scholar

[22] A. Degiron, S.Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O.J. F. Martin, D. R. Smith, Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends, J. Phys. Rev. A, 77(2008) 021804.

DOI: 10.1103/physreva.77.021804

Google Scholar

[23] Pierre Berini, Figures of merit for surface plasmon waveguides, J. Opt. Exp., 14(2006) 13030–13042.

DOI: 10.1364/oe.14.013030

Google Scholar