Research on the Gas Sensing Enhancement by Using CNT/ZnO Composites

Article Preview

Abstract:

Multiwall carbon nanotubes (CNT) were added into ZnO matrix to develop a CNTs/ZnO composite gas sensor. The hybrid sensor is used to detect CO in air by measuring resistance changes of thin CNTs/ZnO films at different working temperature. For comparison, pure ZnO and CNT/ZnO sensors are also examined. The gas sensing results reveal that CNTs/ZnO with the weight ratio (9:100) hybrid sensors exhibit much higher sensitivity and fast response-recovery properties towards CO, at 240°C than the blank ZnO nanowires. Hybrid material of ZnO nanowires and CNT composites could potentially display not only the unique properties of nanowires and those of CNTs, but also an additional novel property.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

1522-1526

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gaurav Singh, Anshul Choudhary , D. Haranath , Renu Pasricha, ZnO decorated luminescent graphene as a potential gas sensor at room temperature, CARBON, 2012, 50: 385 –394.

DOI: 10.1016/j.carbon.2011.08.050

Google Scholar

[2] Weiwei Guo , Tianmo Liu , Wen Zeng , Dejun Liu , Yong Chen , Zhongchang Wang, Gas-sensing property improvement of ZnO by hierarchical flower-like architectures, Materials Letters 2011,65 : 3384–3387.

DOI: 10.1016/j.matlet.2011.07.059

Google Scholar

[3] Bai Shouli, Chen Liangyuan, Hu Jingwei, Li Dianqing, Synthesis of quantum size ZnO crystals and their gas sensing properties for NO2, Sensors and Actuators B 2011,159:97– 102.

DOI: 10.1016/j.snb.2011.06.056

Google Scholar

[4] Lexi Zhang, Jianghong Zhao, Jianfeng Zheng, Li Li , Zhenping Zhu, Hydrothermal synthesis of hierarchical nanoparticle-decorated ZnO microdisks and the structure-enhanced acetylene sensing properties at high temperatures, Sensors and Actuators B 2011,158:144– 150.

DOI: 10.1016/j.snb.2011.05.057

Google Scholar

[5] Liang Peng, Qingru Zeng, Huijuan Song, TianyangWang, Room-temperature gas sensing properties of cobalt-doped ZnO Nanobelts with visible light irradiation, Appl Phys A 2011,105:387–392

DOI: 10.1007/s00339-011-6530-x

Google Scholar

[6] Ang Yu, Jieshu Qian, Hao Pan, Xingfu Zhou, Micro-lotus constructed by Fe-doped ZnO hierarchically porous nanosheets:Preparation, characterization and gas sensing property, Sensors and Actuators B 2011,158: 9– 16.

DOI: 10.1016/j.snb.2011.03.052

Google Scholar

[7] Yi Zeng, Zheng Lou, Lili Wang, Bo Zou, Tong Zhang, Weitao Zheng, Enhanced ammonia sensing performances of Pd-sensitized flowerlike ZnO nanostructure, Sensors and Actuators B 2011,156:395–400.

DOI: 10.1016/j.snb.2011.04.064

Google Scholar

[8] Seok Chang Kang, Ji Sun Im, Sei-Hyun Lee, Tae-Sung Bae, Young-Seak Lee, High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber, Colloids and Surfaces A: Physicochem. Eng. Aspects 2011, 384 : 297– 303.

DOI: 10.1016/j.colsurfa.2011.04.001

Google Scholar

[9] Vyacheslav O.Khavrus , HartmutVinzelberg, JoachimSchumann, On the potential of long carbon nanotube forest for sensing gases and vapors, Physica E 2011, 43: 1199–1207.

DOI: 10.1016/j.physe.2011.01.028

Google Scholar

[10] Lakshman K. Randeniya, Philip J. Martin, Avi Bendavid , Jill McDonnell, Ammonia sensing characteristics of carbon-nanotube yarns decorated with nanocrystalline gold, CARBON, 2011,49 : 5265 –5270

DOI: 10.1016/j.carbon.2011.07.044

Google Scholar

[11] R. Leghrib, A. Felten, J.J. Pireaux, E. Llobet, Gas sensors based on doped-CNT/SnO2 composites for NO2 detection at room temperature, Thin Solid Films 2011,520 :966–970

DOI: 10.1016/j.tsf.2011.04.186

Google Scholar

[12] Tobias Villmow, Sven Pegel, Andreas John, Rosina Rentenberger, and Petra Pötschke, liquid sensing: smart polymer/CNT composites, materials today,2011,14:341-345

DOI: 10.1016/s1369-7021(11)70164-x

Google Scholar

[13] Qingqing Fan, Zongyi Qin, Tobias Villmow, Jürgen Pionteck, Brigitte Voit, Meifang Zhu, Vapor sensing properties of thermoplastic polyurethane multifilament covered with carbon nanotube networks, Sensors and Actuators B 2011,156:63–70.

DOI: 10.1016/j.snb.2011.03.073

Google Scholar

[14] Daegyu Kim, Peter V Pikhitsa, Hongjoo Yang and Mansoo Choi, Room temperature CO and H2 sensing with carbon nanoparticles, Nanotechnology 2011,22: 485501.

DOI: 10.1088/0957-4484/22/48/485501

Google Scholar

[15] D.A. Jack, C.-S. Yeh, Z. Liang, S. Li, J.G. Park, J.C. Fielding, Electrical conductivity modeling and experimental study of densely packed SWCNT networks, Nanotechnology 2010,21: 195703 (12 pp.).

DOI: 10.1088/0957-4484/21/19/195703

Google Scholar

[16] Kauffman DR, Star A: Carbon nanotube gas and vapor sensors. Angew Chem Int Ed 2008, 47:6550.

DOI: 10.1002/anie.200704488

Google Scholar

[17] Fu D, Lim H, Shi Y, Dong X, Mhaisalkar SG, Chen Y, Moochhala S, Li L.Differentiation of gas molecules using flexible and all-carbon nanotube devices. J Phys Chem C 2008, 112:650.

DOI: 10.1021/jp710362r

Google Scholar

[18] Yujin Chen, Chunling Zhu and TaihongWang, The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2core/shell nanostructures, Nanotechnology 2006,17:3012.

DOI: 10.1088/0957-4484/17/12/033

Google Scholar