[1]
J.J. Kasianowicz, E. Brandin, D. Branton and D.W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. USA 93(1996), 13770–13773.
DOI: 10.1073/pnas.93.24.13770
Google Scholar
[2]
G.V. Soni, C. Dekker, Detection of Nucleosomal Substructures using Solid-State Nanopores, Nano Lett. 12(2012), 3180-3186.
DOI: 10.1021/nl301163m
Google Scholar
[3]
J.K. Rosenstein, M. Wanunu, C.A. Merchant, M. Drndic, K.L. Shepard, Integrated nanopore sensing platform with sub-microsecond temporal resolution, Nature Methods, 9(2012).487-U112
DOI: 10.1038/nmeth.1932
Google Scholar
[4]
S. Das, P. Dubsky, A. van den Berg, J.C.T. Eijkel, Concentration Polarization in Translocation of DNA through Nanopores and Nanochannels, Phy. Rev. Lett. 108(2012), 138101
DOI: 10.1103/physrevlett.108.138101
Google Scholar
[5]
H. Bayley, P.S. Cremer. Stochastic sensors inspired by biology, Nature, 413(2001), p.226–230.
DOI: 10.1038/35093038
Google Scholar
[6]
H. Bayley, L. Jayasinghe, Functional engineered channels and pores - (Review), Molecular Membrane Biology 21(2004), 209–220.
DOI: 10.1080/09687680410001716853
Google Scholar
[7]
Q. Jin, A. M. Fleming, C. J. Burrows, Unzipping Kinetics of Duplex DNA Containing Oxidized Lesions in an alpha-Hemolysin Nanopore, J. Am. Chem. Soc. 134(2012): 11006-11011
DOI: 10.1021/ja304169n
Google Scholar
[8]
S. Wen, T. Zeng, L.Liu, Highly Sensitive and Selective DNA-Based Detection of Mercury(II) with alpha-Hemolysin Nanopore, J. Am. Chem. Soc., 133(2011): 18312-18317
DOI: 10.1021/ja206983z
Google Scholar
[9]
R.S.S. de Zoysa, D.M.M. Krishantha, Q.Zhao, Translocation of single-stranded DNA through the alpha-hemolysin protein nanopore in acidic solutions, Electrophoresis, 32 (2011), 3034-3041
DOI: 10.1002/elps.201100216
Google Scholar
[10]
J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz and J. A. Golovchenko, Ion-beam sculpting at nanometre length scales, Nature, 2001, 412, 166–169.
DOI: 10.1038/35084037
Google Scholar
[11]
J. Li, M. Gershow, D. Stein, E. Brandin and J. A. Golovchenko, DNA molecules and configurations in a solid-state nanopore microscope, Nat. Mater., 2003, 2, 611–615.
DOI: 10.1038/nmat965
Google Scholar
[12]
B. Lu, D. P. Hoogerheide, Q. Zhao, Effective driving force applied on DNA inside a solid-state nanopore, Phy. Rev. E, 011921(2012)
DOI: 10.1103/physreve.86.011921
Google Scholar
[13]
M. Wanunu, S.Bhattacharya, Y. Xie, Y. Tor, A. Aksimentiev, M. Drndic, Nanopore Analysis of Individual RNA/Antibiotic Complexes, ACS NANO, 5(2011): 9345-9353
DOI: 10.1021/nn203764j
Google Scholar
[14]
R.S. Wei, V. Gatterdam, R.Wieneke, Stochastic sensing of proteins with receptor-modified solid-state nanopores, Nature Nanotechnol. 7(2012), 257-263
DOI: 10.1038/nnano.2012.24
Google Scholar
[15]
P. S. Spinney, D. G. Howitt, R. L.Smith, Nanopore formation by low-energy focused electron beam machining, Nanotechnology, 21(2010), 375301
DOI: 10.1088/0957-4484/21/37/375301
Google Scholar
[16]
C. M. Edmonds, Y. C. Hudiono, A. G. Ahmadi, Polymer translocation in solid-state nanopores: Dependence of scaling behavior on pore dimensions and applied voltage, J. Chem. Phy. 136(2012), 065105
DOI: 10.1063/1.3682777
Google Scholar
[17]
Q. Zhao, Y. Wang, J. J. Dong, Nanopore-Based DNA Analysis via Graphene Electrodes, J. Nanomater., 318950(2012)
Google Scholar
[18]
B. M. Venkatesan, D. Estrada, S. Banerjee, Stacked Graphene-Al2O3 Nanopore Sensors for Sensitive Detection of DNA and DNA-Protein Complexes, ACS NANO, 6(2012), 441-450
DOI: 10.1021/nn203769e
Google Scholar
[19]
K. K. Saha, M. Drndic, B. K. Nikolic, DNA Base-Specific Modulation of Microampere Transverse Edge Currents through a Metallic Graphene Nanoribbon with a Nanopore, Nano Lett. 12(2012) 50-55
DOI: 10.1021/nl202870y
Google Scholar
[20]
A.J. Storm, J.H. Chen, H.W. Zandbergen, Translocation of double-strand DNA through a silicon oxide nanopore, Phy. Rev. E, 71(2005), 051903
DOI: 10.1103/physreve.71.051903
Google Scholar
[21]
H. Chang, F. Kosari, G. Andreadakis, DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels, Nano Lett., 4(2004), 1551-1556
DOI: 10.1021/nl049267c
Google Scholar
[22]
D. Dobrev, J. Vetter, R. Neumann and N. Angert, Conical etching and electrochemical metal replication of heavy-ion tracks in polymer foils, J. Vac. Sci. Technol., B, 19(2001), 1385–1387.
DOI: 10.1116/1.1381066
Google Scholar
[23]
Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann and K. O. Voss, Surf. Sci., 532–535(2003), Preparation of synthetic nanopores with transport properties analogous to biological channels, 1061–1066
DOI: 10.1016/s0039-6028(03)00448-5
Google Scholar
[24]
C. C. Harrell, Y. Choi, L. P. Horne, L. A. Baker, Z. S. Siwy and C. R. Martin, Resistive-pulse DNA detection with a conical nanopore sensor, Langmuir, 22(2006), 10837–10843
DOI: 10.1021/la061234k
Google Scholar
[25]
A. Mara, Z. Siwy, C. Trautmann, J. Wan and F. Kamme, An asymmetric polymer nanopore for single molecule detection, Nano Lett., 4(2004), 497–501.
DOI: 10.1021/nl035141o
Google Scholar