[1]
N. Kang, D.S. Lee, J. Yoon, Kinetic modeling of Fenton oxidation of phenol and monochlorophenols, Chemosphere 47 (2002) 915-924.
DOI: 10.1016/s0045-6535(02)00067-x
Google Scholar
[2]
E. Oguz, B. Keskinler, Z. Celik, Ozonation of aqueous Bomaplex Red CR-L dye in a semi-batch reactor, Dyes Pigments 64 (2005) 101–108.
DOI: 10.1016/j.dyepig.2004.04.009
Google Scholar
[3]
B.T. Jiang, S.Y. Zhang, X.Z. Guo, et al, Preparation and photocatalytic activity of CeO2/TiO2 interface composite film, Appl. Surf. Sci. 255 (2009) 5975-5978.
DOI: 10.1016/j.apsusc.2009.01.049
Google Scholar
[4]
F.Y. Yi, S.X. Chen, C. Yuan, Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater, J. Hazard. Mater. 157 (2008) 79-87.
DOI: 10.1016/j.jhazmat.2007.12.093
Google Scholar
[5]
H.S. Awad, N.A. Galwa, Electrochemical degradation of acid blue and basic brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors, Chemosphere 61 (2005) 1327–1335.
DOI: 10.1016/j.chemosphere.2005.03.054
Google Scholar
[6]
M. Li, C.P. Feng, W.W. Hu, et al, Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt, J. Hazard. Mater. 162 (2009) 455-462.
DOI: 10.1016/j.jhazmat.2008.05.063
Google Scholar
[7]
M. Sathish, R.P. Viswanath, Electrochemical degradation of aqueous phenols using graphite electrode in divided electrolytic cell, Korean J. Chem. Eng. 22 (2005) 358-363.
DOI: 10.1007/bf02719411
Google Scholar
[8]
N.B. Tahar, A. Savall, Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: acomparison of the activaties of various electrode formlations, J. Appl. Electrochem. 29 (1999) 277-283.
Google Scholar
[9]
C. Comninellis, C. Pulgarin, Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes, J. Appl. Electrochem. 23 (1993) 108-112.
DOI: 10.1007/bf00246946
Google Scholar
[10]
F.H. Oliveira, M.E. Osugi, F.M.M. Paschoal, et al, Electrochemical oxidation of an acid dye by active chlorine generated using Ti/Sn(1-X)IrxO2 electrodes, J. Appl. Electrochem. 37 (2007) 583-592.
DOI: 10.1007/s10800-006-9289-6
Google Scholar
[11]
J.X. Gao, G.H. Zhao, W. Shi, et al, Microwave activated electrochemical degradation of 2,4-dichlorophenoxyacetic acid at boron-doped diamond electrode, Chemosphere 75 (2009) 519-525.
DOI: 10.1016/j.chemosphere.2008.12.018
Google Scholar
[12]
J.F. Marêché, D. Bégin, G. Furdin, et al, Monolithic activated carbons from resin impregnated expanded graphite, Carbon 39 (2001) 771-773.
DOI: 10.1016/s0008-6223(00)00292-x
Google Scholar
[13]
H.Z. Zhao, Y. Sun, L.N. Xu, et al, Removal of acid orange 7 in simulated wastewater using a three-dimensional electrode reactor: Removal mechanisms and dye degradation pathway, Chemosphere 78 (2010) 46-51.
DOI: 10.1016/j.chemosphere.2009.10.034
Google Scholar
[14]
L.Y. Wei, S.H. Guo, G.X. Yan, et al, Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor, Electrochim. acta 55 (2010) 8615-8620.
DOI: 10.1016/j.electacta.2010.08.011
Google Scholar
[15]
J.M. Friedrich, C. Ponce-de-León, G.W. Reade, et al, Reticulated vitreous carbon as an electrode material, J. Electroanal. Chem. 561 (2004) 203-217.
DOI: 10.1016/j.jelechem.2003.07.019
Google Scholar
[16]
L. Fan, Y.W. Zhou, W.S. Yang, et al, Electrochemical degradation of aqueous solution of amaranth azo dye on ACF under potentiostatic model, Dye Pigments 76 (2008) 440-446.
DOI: 10.1016/j.dyepig.2006.09.013
Google Scholar
[17]
Z.M. Shen, W.H. Wang, J.P. Jia, et al, Degradation of dye solution by activated carbon fiber electrode electrolysis system, J. Hazard. Mater. 84 (2001) 107-116.
DOI: 10.1016/s0304-3894(01)00201-1
Google Scholar
[18]
B. Habibi, M. Jahanbakhshi, M.H. Pournaghiazar, Electrochemical oxidation and nanomolar detection of acetaminophen at a carbon-ceramic electrode modified by carbon nanotubes: a comparison between multi walled and single walled carbon nanotubes, Microchim. Acta 172 (2011) 147-154.
DOI: 10.1007/s00604-010-0475-1
Google Scholar
[19]
W. Li, C. Han, W. Liu, et al, Expanded graphite applied in the catatytic process as catalyst support, Catal. Today 125 (2007) 278-281.
DOI: 10.1016/j.cattod.2007.01.035
Google Scholar
[20]
PY X, DAGUERRE E, MENATD D, Composites of expanded natural graphite and in situ prepared activated carbons, Carbon 40 (2002) 1255-1265.
DOI: 10.1016/s0008-6223(01)00285-8
Google Scholar
[21]
C.B. Liu, Z.G. Chen, X.L. Cheng, et al, Preparation and structure analysis of expanded graphite-based composites made by phosphoric acid activation, J. Porous Mat. 17 (2010) 425-428.
DOI: 10.1007/s10934-009-9303-6
Google Scholar