Oxidation-Induced Redshifts in the Energy Gap of Silicon Quantum Dots

Article Preview

Abstract:

To investigate the effects of Si/O bond at the surface of silicon quantum dots (Si QDs) on the electronic properties of Si QDs, first principle calculations have been performed for Si QDs consisting of 10-87 Si atoms (0.6-1.5 nm in diameter) by using the CASTEP software package. In these calculations the Si dangling bonds on the surface of Si QDs are passivated by hydrogen atoms and oxygen. Four different oxygen configurations have been studied, they are double-bonded, backbonded, bridge-bonded and inserted, respectively. We find that a significant reduction of energy gap is caused by the presence of double-bonded oxygen, whereas for other three oxygen configurations there is just a slight reduction on energy gap. As a result, the model which contains Si=O bond is considered the most appropriate to explain the photoluminescence redshifts in oxidized porous silicon.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

852-857

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 1990, 57(10): 1046-1048

DOI: 10.1063/1.103561

Google Scholar

[2] A. G. Cullis, L. T. Canham and P. D. J. Calcott. The structural and luminescence properties of porous silicon. J. Appl. Phys., 1997, 82 (3): 909-965

DOI: 10.1063/1.366536

Google Scholar

[3] J. Wilcoxon, G. Samara, and P. N. Provencio. Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Physical Review B,1999, 60(4): 2704-2714

DOI: 10.1103/physrevb.60.2704

Google Scholar

[4] M. Wolkin, J. Jorne, P. M. Fauchet, et al. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Physical Review Letters, 1999, 82(1): 197-200

DOI: 10.1103/physrevlett.82.197

Google Scholar

[5] G.. Conibeer, M. A. Green, E. Cho, et al. Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films, 2008, 516: 6748-6756

DOI: 10.1016/j.tsf.2007.12.096

Google Scholar

[6] R. Guerra, E. Degoli, and S. Ossicini. Size, oxidation, and strain in small Si/SiO2 nanocrystals. Physical Review B, 2009, 80(15): 155332-1—155332-5

Google Scholar

[7] D. König, J. Rudd, M. A. Green, et al. Impact of interface on the effective band gap of Si quantum dots. Solar Energy Materials & Solar Cells, 2009, 93: 753- 758

DOI: 10.1016/j.solmat.2008.09.026

Google Scholar

[8] L. Koponen, L. Tunturivuori, M. Puska, et al. Effect of the surrounding oxide on the photoabsorption spectra of Si nanocrystals. Physical Review B, 2009, 79(23): 235332-1—235332-6

DOI: 10.1103/physrevb.79.235332

Google Scholar

[9] M. Luppi and S. Ossicini. Ab initio study on oxidized silicon clusters and silicon nanocrystals embedded in SiO2: Beyond the quantum confinement effect. Physical Review B, 2005, 71(3): 035340-1—035340-15

DOI: 10.1103/physrevb.71.035340

Google Scholar

[10] M. Nishida. Calculations of the electronic structure of silicon quantum dots: oxidation-induced redshifts in the energy gap. Semicond. Sci. Technol., 2006, 21(4): 443–449

DOI: 10.1088/0268-1242/21/4/006

Google Scholar

[11] I. Vasiliev, S. Öğüt and J. Chelikowsky. Ab initio absorption spectra and optical gaps in nanocrystalline silicon. Physical Review B, 2001, 86 (9): 1813-1816

DOI: 10.1103/physrevlett.86.1813

Google Scholar

[12] M. Luppi and S. Ossicini. Multiple Si=O bonds at the silicon cluster surface. J. Appl. Phys., 2003, 94(3): 2130-2132

DOI: 10.1063/1.1586954

Google Scholar

[13] A. D. Zdetsis and C. Garoufalis. Real space ab initio calculations of exitation energies in small silicon quantum dots. In : Quantum Dots: Fundamentals, Applications, and Frontiers, B. A. Joyce et al. 2005, 317-332

DOI: 10.1007/1-4020-3315-x_21

Google Scholar

[14] S. Öğüt, J. Chelikowsky and S. G. Louie. Quantum confinement and optical gaps in Si nanocrystal. Physical Review B. 1997, 79(9): 1770-1773

DOI: 10.1103/physrevlett.79.1770

Google Scholar