[1]
L. T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 1990, 57(10): 1046-1048
DOI: 10.1063/1.103561
Google Scholar
[2]
A. G. Cullis, L. T. Canham and P. D. J. Calcott. The structural and luminescence properties of porous silicon. J. Appl. Phys., 1997, 82 (3): 909-965
DOI: 10.1063/1.366536
Google Scholar
[3]
J. Wilcoxon, G. Samara, and P. N. Provencio. Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Physical Review B,1999, 60(4): 2704-2714
DOI: 10.1103/physrevb.60.2704
Google Scholar
[4]
M. Wolkin, J. Jorne, P. M. Fauchet, et al. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Physical Review Letters, 1999, 82(1): 197-200
DOI: 10.1103/physrevlett.82.197
Google Scholar
[5]
G.. Conibeer, M. A. Green, E. Cho, et al. Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films, 2008, 516: 6748-6756
DOI: 10.1016/j.tsf.2007.12.096
Google Scholar
[6]
R. Guerra, E. Degoli, and S. Ossicini. Size, oxidation, and strain in small Si/SiO2 nanocrystals. Physical Review B, 2009, 80(15): 155332-1—155332-5
Google Scholar
[7]
D. König, J. Rudd, M. A. Green, et al. Impact of interface on the effective band gap of Si quantum dots. Solar Energy Materials & Solar Cells, 2009, 93: 753- 758
DOI: 10.1016/j.solmat.2008.09.026
Google Scholar
[8]
L. Koponen, L. Tunturivuori, M. Puska, et al. Effect of the surrounding oxide on the photoabsorption spectra of Si nanocrystals. Physical Review B, 2009, 79(23): 235332-1—235332-6
DOI: 10.1103/physrevb.79.235332
Google Scholar
[9]
M. Luppi and S. Ossicini. Ab initio study on oxidized silicon clusters and silicon nanocrystals embedded in SiO2: Beyond the quantum confinement effect. Physical Review B, 2005, 71(3): 035340-1—035340-15
DOI: 10.1103/physrevb.71.035340
Google Scholar
[10]
M. Nishida. Calculations of the electronic structure of silicon quantum dots: oxidation-induced redshifts in the energy gap. Semicond. Sci. Technol., 2006, 21(4): 443–449
DOI: 10.1088/0268-1242/21/4/006
Google Scholar
[11]
I. Vasiliev, S. Öğüt and J. Chelikowsky. Ab initio absorption spectra and optical gaps in nanocrystalline silicon. Physical Review B, 2001, 86 (9): 1813-1816
DOI: 10.1103/physrevlett.86.1813
Google Scholar
[12]
M. Luppi and S. Ossicini. Multiple Si=O bonds at the silicon cluster surface. J. Appl. Phys., 2003, 94(3): 2130-2132
DOI: 10.1063/1.1586954
Google Scholar
[13]
A. D. Zdetsis and C. Garoufalis. Real space ab initio calculations of exitation energies in small silicon quantum dots. In : Quantum Dots: Fundamentals, Applications, and Frontiers, B. A. Joyce et al. 2005, 317-332
DOI: 10.1007/1-4020-3315-x_21
Google Scholar
[14]
S. Öğüt, J. Chelikowsky and S. G. Louie. Quantum confinement and optical gaps in Si nanocrystal. Physical Review B. 1997, 79(9): 1770-1773
DOI: 10.1103/physrevlett.79.1770
Google Scholar