[1]
Paulay T., Priestley M.J.N., Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley Interscience, New York, (1992).
Google Scholar
[2]
NTC 2008, Decreto Ministeriale 14/01/2008, Nuove Norme Tecniche per le Costruzioni, Gazzetta Ufficiale n. 29 del 4 febbraio 2008 - Suppl. Ordinario n. 30, Roma, (2008).
Google Scholar
[3]
Fajfar, P., Capacity spectrum method based on inelastic demand spectra, Earthquake Engineering & Structural Dynamics, Vol. 28, Issue 9, pp.979-993, (1999).
DOI: 10.1002/(sici)1096-9845(199909)28:9<979::aid-eqe850>3.0.co;2-1
Google Scholar
[4]
Panagiotakos, T.B., Fardis M.N., Deformations of RC members at yielding and ultimate, ACI Structural Journal, Vol. 98, Issue 2, pp.135-148, (2001).
Google Scholar
[5]
Fib 2003, Seismic Assessment and Retrofit of Reinforced Concrete Buildings (Part a), State-of-art report prepared by Task Group 7. 1, Bulletin 24, FIB - Féd. Int. du Béton, (2003).
DOI: 10.35789/fib.bull.0024.ch03
Google Scholar
[6]
Cancellara, D., De Angelis, F., A nonlinear analysis for the retrofitting of a RC existing building by increasing the cross sections of the columns and accounting for the influence of the confined concrete, Applied Mechanics and Materials, Vol. 204-208, pp.3604-3616, (2012).
DOI: 10.4028/www.scientific.net/amm.204-208.3604
Google Scholar
[7]
Cancellara, D., De Angelis, F., Pasquino, V., Displacement based approach for the seismic retrofitting of a RC existing building designed for only gravitational loads, Applied Mechanics and Materials, Vol. 166-169, pp.1718-1729, (2012).
DOI: 10.4028/www.scientific.net/amm.166-169.1718
Google Scholar
[8]
Cancellara, D., De Angelis, F., Pasquino, V., Assessment of the seismic vulnerability of existing RC buildings and effect of the irregular position of the masonry panels on the fragile collapse mechanisms, Advanced Materials Research, Vol. 602-604, pp.1555-1565, (2013).
DOI: 10.4028/www.scientific.net/amr.602-604.1555
Google Scholar
[9]
De Angelis, F., Cancellara, D., Seismic vulnerability of existing RC buildings and influence of the decoupling of the effective masonry panels from the structural frames, Applied Mechanics and Materials, Vol. 256-259, pp.2244-2253, (2013).
DOI: 10.4028/www.scientific.net/amm.256-259.2244
Google Scholar
[10]
De Angelis, F., Cancellara, D., Modano, M., Pasquino, M., The consequence of different loading rates in elasto/viscoplasticity, Procedia Engineering, Vol. 10, pp.2911-2916, (2011).
DOI: 10.1016/j.proeng.2011.04.483
Google Scholar
[11]
De Angelis, F., Cancellara, D., Results of distinct modes of loading procedures in the nonlinear inelastic behavior of solids, Advanced Materials Research, Vol. 482-484, pp.1004-1011, (2012).
DOI: 10.4028/www.scientific.net/amr.482-484.1004
Google Scholar
[12]
De Angelis, F., On the stability of discrete models of compressed beams in elastic media, Applied Mechanics and Materials, Vol. 152-154, pp.982-989, (2012).
DOI: 10.4028/www.scientific.net/amm.152-154.982
Google Scholar
[13]
De Angelis, F., Cancellara, D., On the influence of the elastic medium stiffness in the buckling behavior of compressed beams on elastic foundation, Applied Mechanics and Materials, Vol. 166-169, pp.776-783, (2012).
DOI: 10.4028/www.scientific.net/amm.166-169.776
Google Scholar
[14]
De Angelis, F., An internal variable variational formulation of viscoplasticity, Computer Methods in Applied Mechanics and Engineering, Vol. 190, Nos. 1-2, pp.35-54, (2000).
DOI: 10.1016/s0045-7825(99)00306-0
Google Scholar
[15]
De Angelis, F., Multifield potentials and derivation of extremum principles in rate plasticity, Materials Science Forum, Vol. 539-543, pp.2625-2630, (2007).
DOI: 10.4028/www.scientific.net/msf.539-543.2625
Google Scholar
[16]
De Angelis, F., A variationally consistent formulation of nonlocal plasticity, Int. Journal for Multiscale Computational Engineering, Vol. 5, Issue 2, pp.105-116, New York, (2007).
DOI: 10.1615/intjmultcompeng.v5.i2.40
Google Scholar
[17]
De Angelis, F., Evolutive laws and constitutive relations in nonlocal viscoplasticity, Applied Mechanics and Materials, Vol. 152-154, pp.990-996, (2012).
DOI: 10.4028/www.scientific.net/amm.152-154.990
Google Scholar
[18]
De Angelis, F., On constitutive relations in non-smooth elasto/viscoplasticity, Advanced Materials Research, Vol. 566, pp.691-698, (2012).
DOI: 10.4028/www.scientific.net/amr.566.691
Google Scholar
[19]
De Angelis, F., A general form of constitutive relations in non-smooth elastoplasticity, Applied Mechanics and Materials, Vol. 256-259, pp.979-985, (2013).
DOI: 10.4028/www.scientific.net/amm.256-259.979
Google Scholar
[20]
De Angelis, F., On the relation between two constitutive models frequently adopted in viscoplasticity, Applied Mechanics and Materials, Vol. 256-259, pp.995-1003, (2013).
DOI: 10.4028/www.scientific.net/amm.256-259.995
Google Scholar
[21]
De Angelis, F., Cancellara, D., Constitutive equations for a model of nonlocal plasticity which complies with a nonlocal maximum plastic dissipation principle, Applied Mechanics and Materials, Vol. 217-219, pp.2362-2366, (2012).
DOI: 10.4028/www.scientific.net/amm.217-219.2362
Google Scholar
[22]
De Angelis, F., Cancellara, D., A consistent formulation of constitutive relations for a model of nonlocal viscoplasticity, Applied Mechanics and Materials, Vol. 217-219, pp.2367-2372, (2012).
DOI: 10.4028/www.scientific.net/amm.217-219.2367
Google Scholar
[23]
De Angelis, F., Computational issues in rate dependent plasticity models, Advanced Materials Research, Vol. 566, pp.70-77, (2012).
DOI: 10.4028/www.scientific.net/amr.566.70
Google Scholar
[24]
De Angelis, F., Computational aspects in the elasto/viscoplastic material behavior of solids, Advanced Materials Research, Vol. 567, pp.192-199, (2012).
DOI: 10.4028/www.scientific.net/amr.567.192
Google Scholar
[25]
De Angelis, F., Numerical algorithms for J2 viscoplastic models, Advanced Materials Research, Vol. 567, pp.267-274, (2012).
DOI: 10.4028/www.scientific.net/amr.567.267
Google Scholar
[26]
De Angelis, F., On the structural response of elasto/viscoplastic materials subject to time-dependent loadings, Structural Durability & Health Monitoring, Vol. 8, No. 4, pp.341-358, (2012).
DOI: 10.32604/sdhm.2012.008.341
Google Scholar
[27]
De Angelis, F., A comparative analysis of linear and nonlinear kinematic hardening rules in computational elastoplasticity, Technische Mechanik, Vol. 32 (2-5), pp.164-173, (2012).
Google Scholar
[28]
Alfano, G., De Angelis, F., Rosati, L., General solution procedures in elasto/viscoplasticity, Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp.5123-5147, (2001).
DOI: 10.1016/s0045-7825(00)00370-4
Google Scholar
[29]
De Angelis, F., Cancellara, D., Implications due to different loading programs in inelastic materials, Advanced Materials Research, Vol. 422, pp.726-733, (2012).
DOI: 10.4028/www.scientific.net/amr.422.726
Google Scholar