[1]
F. Moses, Weigh-in-Motion System using Instrumented Bridges, American Society of Civil Engineers, Transportation Engineering Journal, vol. 105, no. 3, p.233–249, (1979).
DOI: 10.1061/tpejan.0000783
Google Scholar
[2]
E. J. OBrien, A. Žnidarič, and A. T. Dempsey, Comparison of two independently developed bridge weigh-in-motion systems, Heavy Vehicle Systems, International Journal of Vehicle Design, vol. 6, no. 1, p.147–161, (1999).
DOI: 10.1504/ijhvs.1999.054503
Google Scholar
[3]
S. S. Law and Y. L. Fang, Moving Force Identification: Optimal State Estimation Approach, Journal of Sound and Vibration, vol. 239, no. 2, p.233–254, (2001).
DOI: 10.1006/jsvi.2000.3118
Google Scholar
[4]
A. Gonzalez, C. Rowley, and E. J. OBrien, A general solution to the identification of moving vehicle forces on a bridge, International Journal for Numerical Methods in Engineering, vol. 75, no. 3, p.335–354, (2008).
DOI: 10.1002/nme.2262
Google Scholar
[5]
C. O'Connor and T. H. T. Chan, Dynamic Wheel Loads from Bridge Strains, Journal of structural engineering New York, N.Y., vol. 114, no. 8, p.1703–1723, (1988).
DOI: 10.1061/(asce)0733-9445(1988)114:8(1703)
Google Scholar
[6]
S. S. Law, T. H. T. Chan, and Q. H. Zeng, Moving force identification: a frequency and time domain analysis, ASME Journal of Dynamic systems, Measurement and Control, vol. 12, p.394–401, (1999).
DOI: 10.1115/1.2802487
Google Scholar
[7]
L. Yu and T. H. T. Chan, Moving force identification based on the frequency-time domain method, Journal of Sound and Vibration, vol. 261, no. 2, p.329–349, (2003).
DOI: 10.1016/s0022-460x(02)00991-4
Google Scholar
[8]
X. Q. Zhu and S. S. Law, Orthogonal Function in Moving Loads Identification in a Multi-span Bridge, Journal of Sound and Vibration, vol. 245, no. 2, p.329–345, (2001).
DOI: 10.1006/jsvi.2001.3577
Google Scholar
[9]
S. S. Law, J. Q. Bu, X. Q. Zhu, and S. L. Chan, Vehicle axle loads identification using finite element method, Engineering Structures, vol. 26, no. 8, p.1143–1153, (2004).
DOI: 10.1016/j.engstruct.2004.03.017
Google Scholar
[10]
M. Azarbayejani, A. I. El-Osery, and M. M. Rede Taha, Entropy-based optimal sensor networks for structural health monitoring of a cable-stayed bridge, Smart Structures and Systems, vol. 5, no. 4, p.369–379, (2009).
DOI: 10.12989/sss.2009.5.4.369
Google Scholar
[11]
J. K. Sinha, M. I. Friswell, and S. Edwards, Simplified Models for the Location of Cracks in Beam Structures Using Measured Vibration Data, Journal of Sound and Vibration, vol. 251, no. 1, p.13–38, Mar. (2002).
DOI: 10.1006/jsvi.2001.3978
Google Scholar
[12]
Cantero, D. and González, A., Location and evaluation of maximum dynamic effects on a simply supported beam due to a quarter-car model, in Bridge and Concrete Research in Ireland, 2008, p.119 – 126.
Google Scholar
[13]
ISO 8608:, Mechanical vibration-road surface profiles - reporting of measured data, (1995).
Google Scholar
[14]
N. K. Harris, E. J. OBrien, and A. González, Reduction of bridge dynamic amplification through adjustment of vehicle suspension damping, Journal of Sound and Vibration, vol. 302, no. 3, p.471–485, (2007).
DOI: 10.1016/j.jsv.2006.11.020
Google Scholar
[15]
C. W. Rowley, E. J. Obrien, A. Gonzalez, and A. Znidaric, Experimental testing of a moving force identification bridge weigh-in-motion algorithm, Experimental Mechanics, vol. 49, no. 5, p.743–746, (2009).
DOI: 10.1007/s11340-008-9188-3
Google Scholar
[16]
J. W. Tedesco, W. G. McDougal, and C. A. Ross, Structural dynamics: theory and applications. Addison Wesley Longman, (1999).
Google Scholar
[17]
M. F. Green and D. Cebon, Dynamic interaction between heavy vehicles and highway bridges, Computers & Structures, vol. 62, no. 2, p.253–264, (1997).
DOI: 10.1016/s0045-7949(96)00198-8
Google Scholar