[1]
EWEA, Green growth: The impact of wind energy on jobs and the economy. (2012).
Google Scholar
[2]
O.T. Thomsen, Sandwich Materials for Wind Turbine Blades - Present and Future, Journal of Sandwich Structures and Materials. 11 (2009) 7-26.
DOI: 10.1177/1099636208099710
Google Scholar
[3]
P. Brøndsted, H. Lilholt, A. Lystrup, Composite Materials for Wind Power Turbine Blades, Annual Review of Materials Research. 35 (2005) 505-538.
DOI: 10.1146/annurev.matsci.35.100303.110641
Google Scholar
[4]
DET NORSKE VERITAS. Design And Manufacture of Wind Turbine Blades - Offshore And Onshore Wind Turbines, DNV-OS-J102 (2006).
DOI: 10.3940/rina.mre.2010.01
Google Scholar
[5]
B. Hayman, Approaches to Damage Assessment and Damage Tolerance for FRP Sandwich Structures, Journal of Sandwich Structures and Materials. 9(6) (2007) 571-596.
DOI: 10.1177/1099636207070853
Google Scholar
[6]
A.F. Johnson, Modelling fabric reinforced composites under impact loads, Composites. 32 (2001) 1197–206.
DOI: 10.1016/s1359-835x(00)00186-x
Google Scholar
[7]
L. Iannucci, Progressive failure modelling of woven carbon composite under impact, International Journal of Impact Engineering. 32(6) (2006) 1013–43.
DOI: 10.1016/j.ijimpeng.2004.08.006
Google Scholar
[8]
R. Borg, L. Nilsson, K. Simonsson, Simulation of low velocity impact on fiber laminates using a cohesive zone based delamination model, Composites Science and Technology. 64 (2004) 279–88.
DOI: 10.1016/s0266-3538(03)00256-2
Google Scholar
[9]
F. Aymerich, F. Dore, P. Priolo, Simulation of multiple delaminations in impacted cross-ply laminates using a finite element model based on cohesive interface elements, Composites Science and Technology. 69 (2009) 1699–1709.
DOI: 10.1016/j.compscitech.2008.10.025
Google Scholar
[10]
C.S. Lopes, P.P. Camanho, Z. Gürdal, P. Maimí and E.V. González, Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations, Composites Science and Technology. 69 (2009) 937–947.
DOI: 10.1016/j.compscitech.2009.02.015
Google Scholar
[11]
M.V. Donadon, L. Iannucci, B.G. Falzon, J.M. Hodgkinson, S.F.M. de Almeida, A progressive failure model for composite laminates subjected to low velocity impact damage, Computers and Structures. 86 (2008) 1232-1252.
DOI: 10.1016/j.compstruc.2007.11.004
Google Scholar
[12]
A. Faggiani, BG. Falzon, Predicting low-velocity impact damage on a stiffened composite panel, Composites: Part A. 41 (2010) 737–749.
DOI: 10.1016/j.compositesa.2010.02.005
Google Scholar
[13]
T Besant, G.A.O. Davies, D. Hitchings, Finite element modelling of low velocity impact of composite sandwich panels, Composites part A. 32 (2001) 1189-1196.
DOI: 10.1016/s1359-835x(01)00084-7
Google Scholar
[14]
M.Q. Nguyen, S.S. Jacombs, R.S. Thomson, Simulation of impact on sandwich structures, Composite Structures. 67(2) (2005) 217–227.
DOI: 10.1016/j.compstruct.2004.09.018
Google Scholar
[15]
I. Ivanez, C. Santiuste, S. Sanchez-Saez, FEM analysis of dynamic flexural behaviour of composite sandwich beams with foam core, Composite Structures. 92(9) (2010) 2285–91.
DOI: 10.1016/j.compstruct.2009.07.018
Google Scholar
[16]
R. Brooks, K.A. Brown, N.A. Warrior and P.P. Kulandaivel, Predictive Modeling of the Impact Response of Thermoplastic Composite Sandwich Structures, Journal of Sandwich Structures and Materials. 12 (2010) 449-476.
DOI: 10.1177/1099636209104537
Google Scholar
[17]
D. Feng, F. Aymerich, Damage prediction in composite sandwich panels subjected to low-velocity impact, submitted for publication, (2012).
Google Scholar
[18]
H. Schurmann, A. Puck, Failure analysis of FRP laminates by means of physically based phenomenological models, Composites Science and Technology. 62 (2002) 1633–62.
DOI: 10.1016/s0266-3538(01)00208-1
Google Scholar
[19]
J.P. Hou, N. Petrinic, C. Ruiz, A delamination criterion for laminated composites under low-velocity impact, Composites Science and Technology. 61 (2001) 2069–74.
DOI: 10.1016/s0266-3538(01)00128-2
Google Scholar