[1]
R. Capozucca, M.N. Cerri, Static and dynamic behaviour of RC beam model strengthened by CFRP sheets, Construction and Building Materials 16 (2002) 91-99.
DOI: 10.1016/s0950-0618(01)00036-8
Google Scholar
[2]
R. Capozucca, Static and dynamic response of damaged RC beams strengthened with NSM CFRP rods, Composite Structures 91 (2009) 237-248.
DOI: 10.1016/j.compstruct.2009.05.003
Google Scholar
[3]
B. Bonfiglioli, G. Pascale, Dynamic behaviour and modelling of RC beams retrofitted with CFRP sheets, CISM courses and lectures no. 471, Udine. Springer Wien New York (2003) 47-57.
DOI: 10.1007/978-3-7091-2536-6_4
Google Scholar
[4]
B. Baghiee, M.R. Esfahani, K. Moslem, Studies on damage and FRP strengthening of reinforced concrete beams by vibration monitoring, Engineering Structures 31 (2009) 875-893.
DOI: 10.1016/j.engstruct.2008.12.009
Google Scholar
[5]
R. Capozucca, Assessment of CFRP strengthened RC beams through dynamic tests, J. Composite B: Engineering 46 (2013) 69-80.
DOI: 10.1016/j.compositesb.2012.10.010
Google Scholar
[6]
C. Caleb White, H.C.H. Li, B. Whittingham, I. Herszberg, A.P. Mouritz, Damage detection in repairs using frequency response technique, Composite Structures, 87 (2009) 175-180.
DOI: 10.1016/j.compstruct.2008.05.010
Google Scholar
[7]
B. Whittingham, H.C.H. Li, I. Herszberg, W.K. Chiu, Disbond detection in adhesively bonded composite structures using vibration signature, Composite Structures, 75 (2006) 351-363.
DOI: 10.1016/j.compstruct.2006.04.055
Google Scholar
[8]
S.S. Kersler, S.M. Spearing, M.J. Atalla, C.E.S. Cesnik , C. Sontis, Damage detection in composite materials using frequency response methods, Composites: Part B, 33 (2002) 87-95.
DOI: 10.1016/s1359-8368(01)00050-6
Google Scholar
[9]
E.V.V. Ramanamurthy, K. Chandrasekaran, Vibration analysis on a composite beam to identify damage and damage severity using finite element method, IJEST, 3(7), (2011), 5865-5888.
Google Scholar
[10]
P. Cawley, R.D. Adams, The location of defects in structures from measurements of natural frequencies, J. Strain Anal. Engrg. Des. 14 (1979) 49–57.
DOI: 10.1243/03093247v142049
Google Scholar
[11]
O.S. Salawu, Detection of structural damage through changes in frequency: a review, Engineering Structures 19 (1997) 718-723.
DOI: 10.1016/s0141-0296(96)00149-6
Google Scholar
[12]
J.R. Casas, A.C. Aparicio, Structural damage identification from dynamic–test data, J. Structural Engineering 120 (1994) 2437-2450.
DOI: 10.1061/(asce)0733-9445(1994)120:8(2437)
Google Scholar
[13]
M.N. Cerri, F. Vestroni, Detection of damage in beams subjected to diffused cracking, J. Sound and Vibration 234 (2) (2000) 259-276.
DOI: 10.1006/jsvi.1999.2887
Google Scholar
[14]
M.M.F. Yuen, A numerical study of the eigenparameters of a damage cantilever, J. Sound Vib. 109(3) (1985) 301-310.
Google Scholar
[15]
W.M. Ostachowics, M. Krawczuk, Analysis of the effect of cracks on the natural frequencies of a cantilever beams, J. Sound Vib. 150 (1991) 191-201.
DOI: 10.1016/0022-460x(91)90615-q
Google Scholar
[16]
Y. Narkis, Identification of crack location in vibrating simply supported beams, J. Sound Vib. 172 (1994) 549-558.
DOI: 10.1006/jsvi.1994.1195
Google Scholar
[17]
S. Christides, A.D.S. Barr, One dimensional theory of cracked Bernoulli-Euler beams, Int. J. Mech. Sci. 26 (1984) 639-648.
DOI: 10.1016/0020-7403(84)90017-1
Google Scholar
[18]
M.H.H. Shen, C. Pierre, Free vibration of beams with a single-edge crack, J. Sound Vib. 170 (1994) 237-259.
DOI: 10.1006/jsvi.1994.1058
Google Scholar
[19]
X.F. Yang, A.S.J. Swamidas and R. Seshadri, Crack identification in vibrating beams using energy method, J. Sound Vib. 224(2) (2001) 339-357.
DOI: 10.1006/jsvi.2000.3498
Google Scholar
[20]
G.B. Warburton, The dynamical behaviour of structures, Pergamon Press, Oxford, (1964).
Google Scholar
[21]
ASTM D 3039/D 3039 M – 08, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, American Standard of Testing and Materials (2008).
Google Scholar