Changes in the Dynamic Behaviour of Carbon Fibre Reinforced Polymer Elements with Increasing Damage

Article Preview

Abstract:

This paper deals with effects of damage on Carbon FRP (CFRP) elements subjected both to defects and micro-cracking due to static tensile loading through an investigation of CFRP elements under natural vibration tests. The correlation between the response and frequency decrease due to damage for cross section reduction of CFRP cantilever beam elements has been analysed. Successively, the response of CFRP subjected to different values of tensile force has been investigated; experimental frequency values are compared with theoretical values and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 569-570)

Pages:

56-63

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Capozucca, M.N. Cerri, Static and dynamic behaviour of RC beam model strengthened by CFRP sheets, Construction and Building Materials 16 (2002) 91-99.

DOI: 10.1016/s0950-0618(01)00036-8

Google Scholar

[2] R. Capozucca, Static and dynamic response of damaged RC beams strengthened with NSM CFRP rods, Composite Structures 91 (2009) 237-248.

DOI: 10.1016/j.compstruct.2009.05.003

Google Scholar

[3] B. Bonfiglioli, G. Pascale, Dynamic behaviour and modelling of RC beams retrofitted with CFRP sheets, CISM courses and lectures no. 471, Udine. Springer Wien New York (2003) 47-57.

DOI: 10.1007/978-3-7091-2536-6_4

Google Scholar

[4] B. Baghiee, M.R. Esfahani, K. Moslem, Studies on damage and FRP strengthening of reinforced concrete beams by vibration monitoring, Engineering Structures 31 (2009) 875-893.

DOI: 10.1016/j.engstruct.2008.12.009

Google Scholar

[5] R. Capozucca, Assessment of CFRP strengthened RC beams through dynamic tests, J. Composite B: Engineering 46 (2013) 69-80.

DOI: 10.1016/j.compositesb.2012.10.010

Google Scholar

[6] C. Caleb White, H.C.H. Li, B. Whittingham, I. Herszberg, A.P. Mouritz, Damage detection in repairs using frequency response technique, Composite Structures, 87 (2009) 175-180.

DOI: 10.1016/j.compstruct.2008.05.010

Google Scholar

[7] B. Whittingham, H.C.H. Li, I. Herszberg, W.K. Chiu, Disbond detection in adhesively bonded composite structures using vibration signature, Composite Structures, 75 (2006) 351-363.

DOI: 10.1016/j.compstruct.2006.04.055

Google Scholar

[8] S.S. Kersler, S.M. Spearing, M.J. Atalla, C.E.S. Cesnik , C. Sontis, Damage detection in composite materials using frequency response methods, Composites: Part B, 33 (2002) 87-95.

DOI: 10.1016/s1359-8368(01)00050-6

Google Scholar

[9] E.V.V. Ramanamurthy, K. Chandrasekaran, Vibration analysis on a composite beam to identify damage and damage severity using finite element method, IJEST, 3(7), (2011), 5865-5888.

Google Scholar

[10] P. Cawley, R.D. Adams, The location of defects in structures from measurements of natural frequencies, J. Strain Anal. Engrg. Des. 14 (1979) 49–57.

DOI: 10.1243/03093247v142049

Google Scholar

[11] O.S. Salawu, Detection of structural damage through changes in frequency: a review, Engineering Structures 19 (1997) 718-723.

DOI: 10.1016/s0141-0296(96)00149-6

Google Scholar

[12] J.R. Casas, A.C. Aparicio, Structural damage identification from dynamic–test data, J. Structural Engineering 120 (1994) 2437-2450.

DOI: 10.1061/(asce)0733-9445(1994)120:8(2437)

Google Scholar

[13] M.N. Cerri, F. Vestroni, Detection of damage in beams subjected to diffused cracking, J. Sound and Vibration 234 (2) (2000) 259-276.

DOI: 10.1006/jsvi.1999.2887

Google Scholar

[14] M.M.F. Yuen, A numerical study of the eigenparameters of a damage cantilever, J. Sound Vib. 109(3) (1985) 301-310.

Google Scholar

[15] W.M. Ostachowics, M. Krawczuk, Analysis of the effect of cracks on the natural frequencies of a cantilever beams, J. Sound Vib. 150 (1991) 191-201.

DOI: 10.1016/0022-460x(91)90615-q

Google Scholar

[16] Y. Narkis, Identification of crack location in vibrating simply supported beams, J. Sound Vib. 172 (1994) 549-558.

DOI: 10.1006/jsvi.1994.1195

Google Scholar

[17] S. Christides, A.D.S. Barr, One dimensional theory of cracked Bernoulli-Euler beams, Int. J. Mech. Sci. 26 (1984) 639-648.

DOI: 10.1016/0020-7403(84)90017-1

Google Scholar

[18] M.H.H. Shen, C. Pierre, Free vibration of beams with a single-edge crack, J. Sound Vib. 170 (1994) 237-259.

DOI: 10.1006/jsvi.1994.1058

Google Scholar

[19] X.F. Yang, A.S.J. Swamidas and R. Seshadri, Crack identification in vibrating beams using energy method, J. Sound Vib. 224(2) (2001) 339-357.

DOI: 10.1006/jsvi.2000.3498

Google Scholar

[20] G.B. Warburton, The dynamical behaviour of structures, Pergamon Press, Oxford, (1964).

Google Scholar

[21] ASTM D 3039/D 3039 M – 08, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, American Standard of Testing and Materials (2008).

Google Scholar